Microbiological monitoring of major pathogens in infected long bone fractures treated with external osteosynthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The development of fracture-related infection disrupts osteoreparative processes at the fracture site, which may result in the need for repeated surgical interventions. It is well known that the etiology of fracture-related infection involves microorganisms, whose spectrum may vary considerably across healthcare facilities. Staphylococcus aureus and coagulase-negative staphylococci are the predominant pathogens in this condition, whereas Gram-negative bacteria, anaerobes, and fungi are less common.

AIM: The work is aimed to determine the spectrum and changes of major pathogens in patients with long bone fracture-related infection and post-traumatic chronic osteomyelitis treated with external osteosynthesis from 2019 to 2024.

METHODS: A single-center retrospective analysis was conducted based on microbiological findings in 247 patients with long bone fracture-related infection and chronic osteomyelitis as its sequela, all treated with external osteosynthesis. The spectrum of major pathogens and their changes over time were examined. The statistical analysis was performed using Pearson’s chi-square(χ2) test.

RESULTS: Positive cultures were obtained in 70.4% of cases, whereas 29.6% were negative. A total of 230 microorganisms were identified: 158 (68.7%) Gram-positive, 71 (30.9%) Gram-negative, and 1 (0.4%) fungal isolate. Monomicrobial infections were revealed in 76.4% of cases, whereas in 23.6% of cases, the infection was polymicrobial. A microbial shift was observed in 18.4% of patients: in 15.5% during treatment and in 2.9% upon recurrence.

DISCUSSION: The major causative pathogens of fracture-related infection were S. aureus (36.9%), S. epidermidis (10%), K. pneumoniae (9.1%), E. faecalis (7.8%), A. baumannii (6.1%), P. aeruginosa (4.3%), E. cloacae and Corynebacterium (3.5% each). Between 2019 and 2024, the incidence of MRSE and E. faecalis increased from 0.6% to 5.7% and 8.2%, respectively; Corynebacterium from 0% to 3.2%; K. pneumoniae from 2.8% to 12.7%; and E. cloacae from 1.4% to 9.9%. A microbial shift during treatment was observed in patients with open fractures and extensive soft tissue defects. Microbial composition showed unpredictable variation. In cases of recurrence, the primary isolate was often replaced by MSSA, E. faecalis, or Corynebacterium.

CONCLUSION: Despite an increasing proportion of MRSE, E. faecalis, Corynebacterium, K. pneumoniae, and E. cloacae in the etiological structure of fracture-related infection, S. aureus remains the predominant pathogen.

About the authors

Archil V. Tsiskarashvili

Priorov Central Research Institute of Traumatology and Orthopedics

Author for correspondence.
Email: armed05@mail.ru
ORCID iD: 0000-0003-1721-282X
SPIN-code: 2312-1002

MD, Cand. Sci. (Medicine)

Russian Federation, 10 Priorova st, Moscow, 127299

Regina E. Melikova

Priorov Central Research Institute of Traumatology and Orthopedics

Email: regina-melikova@mail.ru
ORCID iD: 0000-0002-5283-7078
SPIN-code: 8288-0256

MD, Cand. Sci. (Medicine)

Russian Federation, 10 Priorova st, Moscow, 127299

Anton G. Nazarenko

Priorov Central Research Institute of Traumatology and Orthopedics

Email: nazarenkoag@cito-priorov.ru
ORCID iD: 0000-0003-1314-2887
SPIN-code: 1402-5186

Corresponding Member of the Russian Academy of Sciences, MD, Dr. Sci. (Medicine), Professor of RAS

Russian Federation, 10 Priorova st, Moscow, 127299

References

  1. Giannitsioti E, Salles MJ, Mavrogenis A, et al.; The Esgiai Collaborators Study Group. Osteosynthesis-associated infection of the lower limbs by multidrug-resistant and extensively drug-resistant Gram-negative bacteria: a multicentre cohort study. J Bone Jt Infect. 2022;7(6):279–288. doi: 10.5194/jbji-7-279-2022
  2. Rupp M, Walter N, Popp D, et al. Multidisciplinary Treatment of Fracture-Related Infection Has a Positive Impact on Clinical Outcome-A Retrospective Case Control Study at a Tertiary Referral Center. Antibiotics (Basel). 2023;12(2):230. doi: 10.3390/antibiotics12020230
  3. Metsemakers WJ, Kuehl R, Moriarty TF, et al. Infection after fracture fixation: Current surgical and microbiological concepts. Injury. 2018;49(3):511–522. doi: 10.1016/j.injury.2016.09.019
  4. Mthethwa PG, Marais LC. The microbiology of chronic osteomyelitis in a developing world setting. SA Orthopaedic Journal. 2017;16(2):39–45. doi: 10.17159/2309-8309/2017/v16n2a4
  5. Zhang Z, Liu P, Wang W, et al. Epidemiology and Drug Resistance of Fracture-Related Infection of the Long Bones of the Extremities: A Retrospective Study at the Largest Trauma Center in Southwest China. Front Microbiol. 2022;13:923735. doi: 10.3389/fmicb.2022.923735
  6. Baertl S, Walter N, Engelstaedter U, et al. What Is the Most Effective Empirical Antibiotic Treatment for Early, Delayed, and Late Fracture-Related Infections? Antibiotics (Basel). 2022;11(3):287. doi: 10.3390/antibiotics11030287
  7. Muthukrishnan G, Masters EA, Daiss JL, Schwarz EM. Mechanisms of Immune Evasion and Bone Tissue Colonization That Make Staphylococcus aureus the Primary Pathogen in Osteomyelitis. Curr Osteoporos Rep. 2019;17(6):395–404. doi: 10.1007/s11914-019-00548-4
  8. Ren Y, Liu L, Sun D, et al. Epidemiological updates of post-traumatic related limb osteomyelitis in china: a 10 years multicentre cohort study. Int J Surg. 2023;109(9):2721–2731. doi: 10.1097/JS9.0000000000000502
  9. Graan D, Balogh ZJ. Microbiology of fracture related infections. J Orthop Surg (Hong Kong). 2022;30(3):10225536221118512. doi: 10.1177/10225536221118512
  10. Corrigan R, Sliepen J, Rentenaar RJ, et al. The effect of guideline-based antimicrobial therapy on the outcome of fracture-related infections (EAT ПАИ Study). J Infect. 2023;86(3):227–232. doi: 10.1016/j.jinf.2023.01.028
  11. Pliska NN. Pseudomonas Aeruginosa as the Main Causative Agent of Osteomyelitis and its Susceptibility to Antibiotics. Drug Res (Stuttg). 2020;70(6):280–285. doi: 10.1055/a-1150-2372
  12. Rupp M, Baertl S, Walter N, et al. Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Jt. Infection? A Retrospective Comparative Study. Antibiotics. 2021;10(8):921. doi: 10.3390/antibiotics10080921
  13. Young BC, Dudareva M, Vicentine MP, et al. Microbial Persistence, Replacement and Local Antimicrobial Therapy in Recurrent Bone and Joint Infection. Antibiotics (Basel). 2023;12(4):708. doi: 10.3390/antibiotics12040708
  14. Carbonell-Rosell C, Lakhani K, Lung M, et al. Etiology and antimicrobial resistance patterns in chronic osteomyelitis of the tibia: an 11-year clinical experience. Arch Orthop Trauma Surg. 2024;144(2):773–781. doi: 10.1007/s00402-023-05095-3
  15. Burnashov SI, Shipitsyna IV, Osipova EV. Microflora of surgical wounds and fistulas in patients with chronic osteomyelitis of the tibia before reconstructive treatment, in case of recurrence of infection. Clinical Laboratory Diagnostics. 2019;64(10):627–631. doi: 10.18821/0869-2084-2019-64-10-627-631 EDN: FONHNW
  16. Shipitsyna IV, Osipova EV. Role of anaerobic microflora in the etiology of chronic osteomyelitis. Clinical Laboratory Diagnostics. 2024;69(2):92–96. doi: 10.51620/0869-2084-2024-69-2-92-96 EDN: GVYMGO
  17. Shenoy PA, Vishwanath S, Bhat SN, Mukhopadhyay C, Chawla K. Microbiological profile of chronic osteomyelitis with special reference to anaerobic osteomyelitis in a tertiary care hospital of coastal Karnataka. Trop Doct. 2020;50(3):198–202. doi: 10.1177/0049475520921283
  18. Wang B, Xiao X, Zhang J, et al. Epidemiology and microbiology of fracture-related infection: a multicenter study in Northeast China. J Orthop Surg Res. 2021;16(1):490. doi: 10.1186/s13018-021-02629-6
  19. Patel KH, Gill LI, Tissingh EK, et al. Microbiological Profile of Fracture Related Infection at a UK Major Trauma Centre. Antibiotics (Basel). 2023;12(9):1358. doi: 10.3390/antibiotics12091358
  20. Depypere M, Morgenstern M, Kuehl R, et al. Pathogenesis and management of fracture-related infection. Clin Microbiol Infect. 2020;26(5):572–578. doi: 10.1016/j.cmi.2019.08.006
  21. Tsiskarashvili AV, Zhadin AV, Kuzmenkov KA, Bukhtin KM, Melikova RE. Biomechanically validated transosseus fixation in patients with femur pseudarthrosis complicated by chronic osteomyelitis. N.N. Priorov Journal of Traumatology and Orthopedics. 2018;(3–4):71–78. doi: 10.17116/vto201803-04171 EDN: XDXVSX
  22. Tsiskarashvili AV, Melikova RE, Zhadin AV, Kuzmenkov KA. Biomechanical evidence-based transosseous osteosynthesis in treatment of humerus fractures complicated by chronic osteomyelitis and consequences. N.N. Priorov Journal of Traumatology and Orthopedics. 2020;27(4):28–40. doi: 10.17816/vto57136 EDN: CWGWWM
  23. Determination of the sensitivity of microorganisms to antimicrobial drugs: recommendations: version 2021-01. Available from: antibiotic.ru›files/321/clrec-dsma2021.pdf (In Russ.).
  24. Vanvelk N, Van Lieshout EMM, Onsea J, et al. Diagnosis of fracture-related infection in patients without clinical confirmatory criteria: an international retrospective cohort study. J Bone Jt Infect. 2023;8(2):133–142. doi: 10.5194/jbji-8-133-2023
  25. Yang L, Feng J, Liu J, et al. Pathogen identification in 84 Patients with post-traumatic osteomyelitis after limb fractures. Ann Palliat Med. 2020;9(2):451–458. doi: 10.21037/apm.2020.03.29
  26. Sheehy SH, Atkins BA, Bejon P, et al. The microbiology of chronic osteomyelitis: prevalence of resistance to common empirical anti-microbial regimens. J Infect. 2010;60(5):338–43. doi: 10.1016/j.jinf.2010.03.006
  27. Vicenti G, Buono C, Albano F, et al. Early Management for Fracture-Related Infection: A Literature Review. Healthcare (Basel). 2024;12(13):1306. doi: 10.3390/healthcare12131306
  28. Hussain SA, Walters S, Ahluwalia AK, Trompeter A. Fracture-related infections. Br J Hosp Med (Lond). 2023;84(8):1–10. doi: 10.12968/hmed.2022.0545
  29. Peng J, Ren Y, He W, et al. Epidemiological, Clinical and Microbiological Characteristics of Patients with Post-Traumatic Osteomyelitis of Limb Fractures in Southwest China: A Hospital-Based Study. J Bone Jt Infect. 2017;2(3):149–153. doi: 10.7150/jbji.20002
  30. Kuehl R, Tschudin-Sutter S, Morgenstern M, et al. Time-dependent differences in management and microbiology of orthopaedic internal fixation-associated infections: An observational prospective study with 229 patients. Clin Microbiol Infect. 2019;25(1):76–81. doi: 10.1016/j.cmi.2018.03.040
  31. Dudareva M, Hotchen AJ, Ferguson J, et al. The microbiology of chronic osteomyelitis: Changes over ten years. J Infect. 2019;79(3):189–198. doi: 10.1016/j.jinf.2019.07.006
  32. Jorge LS, Fucuta PS, Oliveira MGL, et al. Outcomes and Risk Factors for Polymicrobial Posttraumatic Osteomyelitis. J Bone Jt Infect. 2018;3(1):20–26. doi: 10.7150/jbji.22566
  33. Rupp M, Walter N, Bärtl S, et al. Fracture-Related Infection-Epidemiology, Etiology, Diagnosis, Prevention, and Treatment. Dtsch Arztebl Int. 2024;121(1):17–24. doi: 10.3238/arztebl.m2023.0233
  34. Shipitsyna I, Osipova E, Leonchuk D, Sudnitsyn A. Monitoring of gram-negative bacteria and antibiotic resistance in osteomyelitis. Genij Ortopedii. 2020;26(4):544–547. doi: 10.18019/1028-4427-2020-26-4-544-547 EDN: EKBOTN
  35. Shipitsyna IV, Osipova EV. Analysis of the qualitative and quantitative community composition of bacteria isolated from the purulent focus in patients with chronic osteomyelitis over a three year period. Genij Ortopedii. 2022;28(6):788–793. doi: 10.18019/1028-4427-2022-28-6-788-793 EDN: DWFHDG
  36. Gitajn I, Werth P, O’Toole RV, et al. Microbial Interspecies Associations in Fracture-Related Infection. J Orthop Trauma. 2022;36(6):309–316. doi: 10.1097/BOT.0000000000002314
  37. Rosova LV, Godovykh NV. The microbiological study of purulent focus of inflammation in patients with chronic osteomyelitis of long bones. Clinical Laboratory Diagnostics. 2016;61(10):727–730. doi: 10.18821/0869-2084-2016-61-10-727-730 EDN: XBFRYT
  38. Tsiskarashvili AV, Gorbatyuk DS, Melikova RE, et al. Microbiological spectrum of causative agents of implant-associated infection in the treatment of complications of transpedicular fixation of the spine using the negative pressure method. Russian Journal of Spine Surgery. 2022;19(3):77–87. doi: 10.14531/ss2022.3.77-87 EDN: TGAPAP
  39. Urish KL, Cassat JE. Staphylococcus aureus Osteomyelitis: Bone, Bugs, and Surgery. Infect Immun. 2020;88(7):e00932–19. doi: 10.1128/IAI.00932-19
  40. Zhang K, Bai YZ, Liu C, et al. Composition of pathogenic microorganism in chronic osteomyelitis based on metagenomic sequencing and its application value in etiological diagnosis. BMC Microbiol. 2023;23(1):313. doi: 10.1186/s12866-023-03046-x
  41. He SY, Yu B, Jiang N. Current Concepts of Fracture-Related Infection. Int J Clin Pract. 2023;2023:4839701. doi: 10.1155/2023/4839701
  42. Onsea J, Van Lieshout EMM, Zalavras C, et al. Validation of the diagnostic criteria of the consensus definition of fracture-related infection. Injury. 2022;53(6):1867–1879. doi: 10.1016/j.injury.2022.03.024
  43. Corrigan RA, Sliepen J, Dudareva M, et al. Causative Pathogens Do Not Differ between Early, Delayed or Late Fracture-Related Infections. Antibiotics (Basel). 2022;11(7):943. doi: 10.3390/antibiotics11070943
  44. Walter N, Baertl S, Engelstaedter U, et al. Letter in response to article in journal of infection: “The microbiology of chronic osteomyelitis: Changes over ten years”. J Infect. 2021;83(6):709–737. doi: 10.1016/j.jinf.2021.09.006
  45. Baertl S, Rupp M, Alt V. The DAIR-procedure in fracture-related infection-When and how. Injury. 2024;55 Suppl 6:111977. doi: 10.1016/j.injury.2024.111977

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of patients by group, depending on the timing of infection onset and type of fracture.

Download (172KB)
3. Fig. 2. Distribution of patients by group, depending on the duration of infection.

Download (128KB)
4. Fig. 3. Microbiological spectrum of pathogens in fracture-related infection and chronic post-traumatic osteomyelitis of long bones.

Download (202KB)
5. Fig. 4. Species-specific resistance of the most common pathogens throughout the microbial spectrum during the study period.

Download (169KB)
6. Fig. 5. Changes in identification frequency of leading Gram-positive pathogens across the study periods.

Download (167KB)
7. Fig. 6. Changes in identification frequency of leading Gram-negative pathogens across the study periods.

Download (153KB)
8. Fig. 7. Changes in monomicrobial infection detection rates across the study periods, based on Gram classification of verified microorganisms (n=133).

Download (127KB)
9. Fig. 8. Changes in polymicrobial infection detection rates across the study periods, based on Gram classification of identified microorganisms (n=41).

Download (128KB)
10. Fig. 9. Species composition of microorganisms identified during microbial shift in the course of treatment and in cases of infection recurrence.

Download (211KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».