Sequential osteosynthesis in the context of modern armed conflicts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Limb injuries remain the most prevalent combat injuries in modern armed conflicts, accounting for 55% to 75% of all cases. The transosseous compression-distraction osteosynthesis technique developed by Ilizarov has long been used in Russia to treat this patient population. However, given the current rate of mass casualty admissions to central military medical facilities, there is a growing need to improve treatment quality while shortening treatment time. Sequential internal osteosynthesis is one way for improving care. Antibiotic-coated implants reduce the risk of infectious complications during sequential osteosynthesis.

AIM: This study aimed to assess the efficacy of sequential osteosynthesis in the treatment of gunshot fractures of long bones of the limbs in the current armed conflict setting, based on our clinical experience and global scientific data.

METHODS: The study is based on an analysis of treatment outcomes in 320 patients with upper and lower limb injuries who received specialized medical care at the Department of Traumatology and Orthopedics of the N.N. Burdenko Main Military Clinical Hospital, Ministry of Defense of the Russian Federation. Patients were divided into three groups based on the osteosynthesis technique used. All patients were male, aged 18 to 59 years, with a mean age of 32.2 ± 9.02 years. Stepwise X-ray examinations were performed in all patients following osteosynthesis. Functional outcomes of humeral fracture treatment were assessed using the DASH score, whereas functional outcomes of femoral and tibial fracture treatment were evaluated using the Neer–Grantham–Shelton scale.

RESULTS: The study included 90 patients (28.125%) with humeral fractures and 230 patients (71.875%) with lower limb injuries associated with femoral or tibial fractures. Shrapnel wounds and/or blast injuries predominated in 288 cases (90%). An intergroup comparison showed that antibiotic-coated implants significantly (p < 0.0167) accelerated the transition from external to internal fixation and reduced the risk of infectious complications.

CONCLUSION: Sequential osteosynthesis has proven to be an effective two-stage treatment for long bone fractures in wounded individuals. In the context of modern armed conflict, it is considered the primary approach to managing isolated and multiple uncomplicated gunshot fractures, provided that established guidelines are strictly followed. Furthermore, given the recent advances in traumatology and orthopedics, antibiotic-coated implants can be used to reduce the risk of infectious complications.

About the authors

Artur A. Kerimov

Main Military Clinical Hospital named after N.N. Burdenko

Email: kerartur@yandex.ru
ORCID iD: 0000-0001-5783-6958
SPIN-code: 3131-1308

MD, Cand. Sci. (Medicine)

Russian Federation, 3 Gospitalnaya pl., Moscow, 105094

Igor V. Khominets

Main Military Clinical Hospital named after N.N. Burdenko

Author for correspondence.
Email: khominets24_91@mail.ru
ORCID iD: 0000-0003-0964-653X
SPIN-code: 5928-5370

MD, Cand. Sci. (Medicine)

Russian Federation, 3 Gospitalnaya pl., Moscow, 105094

Sergey N. Perekhodov

Russian University of Medicine

Email: PEREKHODOV-SN@msmsu.ru
ORCID iD: 0000-0001-7166-0290
SPIN-code: 8770-6877

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Nikolay S. Kozlov

Russian University of Medicine

Email: meddikk@yandex.ru
ORCID iD: 0000-0002-0873-1380
SPIN-code: 5118-9215

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Moscow

Kazbek K. Bekshokov

Peoples’ Friendship University of Russia

Email: kazbek.bekshokov.99@mail.ru
ORCID iD: 0000-0002-2667-341X
SPIN-code: 8906-6553

MD, resident

Russian Federation, Moscow

Maksim N. Nelin

Main Military Clinical Hospital named after N.N. Burdenko

Email: nelinmaksimdoc@gmail.com
ORCID iD: 0009-0000-0198-7693
SPIN-code: 5143-3630

MD

Russian Federation, 3 Gospitalnaya pl., Moscow, 105094

Evgeniy A. Kukushko

Main Military Clinical Hospital named after N.N. Burdenko

Email: doctrauma87@gmail.com
ORCID iD: 0000-0002-2941-9601
SPIN-code: 6736-1323

MD

Russian Federation, 3 Gospitalnaya pl., Moscow, 105094

Vladimir D. Besedin

Main Military Clinical Hospital named after N.N. Burdenko

Email: BesedinVD@yandex.ru
ORCID iD: 0000-0001-9087-1421
SPIN-code: 9908-6830

MD

Russian Federation, 3 Gospitalnaya pl., Moscow, 105094

Sergey I. Tverdokhlebov

National Research Tomsk Polytechnic University (Tomsk Polytechnic University)

Email: tverd@tpu.ru
ORCID iD: 0000-0002-2242-6358
SPIN-code: 9005-9207

Cand. Sci. (Physics and Mathematics), Associate Professor

Russian Federation, Tomsk

Anna I. Kozelskaya

National Research Tomsk Polytechnic University (Tomsk Polytechnic University)

Email: kozelskayaai@tpu.ru
ORCID iD: 0000-0003-0168-0952
SPIN-code: 7317-8713

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Tomsk

References

  1. Trishkin DV, Kryukov EV, Davydov DV, et al. Development of the concept of providing medical care to the wounded with injuries of the musculoskeletal system in modern conditions. Military Medical Journal. 2024;345(5):4–11. doi: 10.52424/00269050_2024_345_5_4 EDN: TALTJH
  2. Esipov AV, Sukhorukov AL, Musailov VA, et al. The magnitude and structure of isolated limb wounds in modern local conflicts (Literature review). Military Medical Journal. 2023;344(3):33–39. doi: 10.52424/00269050_2023_344_3_33 EDN: IOTYEX
  3. Kryukov EV, Davydov DV, Khominets VV, et al. Stage-by-stage treatment of the wounded with injuries of the musculoskeletal system in modern armed conflict. Military Medical Journal. 2023;34(3):4–17. doi: 10.52424/00269050_2023_344_3_4 EDN: HWUCXD
  4. Chandler H, MacLeod K, Penn-Barwell JG; Severe Lower Extremity Combat Trauma (SeLECT) Study Group. Extremity injuries sustained by the UK military in the Iraq and Afghanistan conflicts: 2003–2014. Injury. 2017;48(7):1439–1443. doi: 10.1016/j.injury.2017.05.022
  5. Khominets VV, Shapovalov VM, Mikhailov SV, Brizhan LK. Treatment of wounded in limbs in wars and armed conflicts. Monograph. St. Petersburg: Historical Illustration; 2021. 304 p. EDN: IUQQOX
  6. Shchukin AV. Improvement of sequential osteosynthesis in the treatment of wounded with gunshot fractures of long limb bones [dissertation]. 2018. 197 p. (In Russ.). EDN: CVGYII
  7. Kozelskaya AI, Früh A, Rutkowski S, et al. Antibacterial double-layer calcium phosphate/chitosan composite coating on metal implants for tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2025;705(2). doi: 10.1016/j.colsurfa.2024.135652
  8. Fox JP, Markov NP, Markov AM, et al. Plastic surgery at war: a scoping review of current conflicts. Military medicine. 2021;186(3–4):e327–e335. doi: 10.1093/milmed/usaa361
  9. Gritsyuk AA. Reconstruction and plastic surgery of combat injuries of limbs [dissertation]. Moscow, 2006. 43 р. (In Russ.). EDN: QEAXNN
  10. Ivanov PA, Sokolov VA, Bialik EI, et al. The use of intramedullary interlocked pins with an active antibacterial coating in the treatment of severe open fractures and their complications. Bulletin of Traumatology and orthopedics named after N.N. Priorov. 2009;(1):13–18. EDN: KCKVMJ
  11. Solanki T, Maurya MK, Singh PK. Results of Antibiotic-Impregnated Cement/Polymer-Coated Intramedullary Nails in the Management of Infected Nonunion and Open Fractures of Long Bones. Cureus. 2023;15(8). doi: 10.7759/cureus.43421
  12. Thonse R, Conway J. Antibiotic cement-coated interlocking nail for the treatment of infected nonunions and segmental bone defects. J Orthop Trauma. 2007;21(4):258–68. doi: 10.1097/bot.0b013e31803ea9e6
  13. Vargas-Hernández JS, Sánchez CA, Renza S, Leal JA. Effectiveness of antibiotic-coated intramedullary nails for open tibia fracture infection prevention. A systematic review and meta-analysis. Injury. 2023;54 Suppl 6:110857. doi: 10.1016/j.injury.2023.110857
  14. Volotovsky PA, Sitnik AA, Tapalsky DV, et al. The immediate results of the clinical application of a blocked intramedullary fixator with a three-component antibacterial coating for infected fractures and non-joints of long tubular bones. News of surgery. 2020;28(6):680–687. EDN: CBTFDR
  15. Gutha Y, Pathak JL, Zhang W, Zhang Y, et al. Antibacterial and wound healing properties of chitosan/poly (vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol. 2017;103:234–241. doi: 10.1016/j.ijbiomac.2017.05.020
  16. Artemyev AA, Kerimov AA, Peredonov SN, et al. Sequential external osteosynthesis of gunshot fractures of limb bones at the stages of medical evacuation. Medical Bulletin of the N.N. Burdenko State Medical University. 2023;(1):22–31. doi: 10.53652/2782-1730-2023-4-1-22-31 EDN: YALOZN
  17. Yudin KA. Sequential osteosynthesis in the treatment of wounded with gunshot fractures of the long bones of the lower extremities. Izvestia of the Russian Military Medical Academy. 2019;38(S1–2):283–285. EDN: ZZJAXJ
  18. Alavi M, Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr Polym. 2020;227:115349. doi: 10.1016/j.carbpol.2019.115349
  19. Ghaseminejad-Raeini A, Azarboo A, Pirahesh K, et al. Antibiotic-Coated Intramedullary Nailing Managing Long Bone Infected Non-Unions: A Meta-Analysis of Comparative Studies. Antibiotics (Basel). 2024;13(1):69. doi: 10.3390/antibiotics13010069
  20. Rashki S, Asgarpour K, Tarrahimofrad H, et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym. 2021;251:117108. doi: 10.1016/j.carbpol.2020.117108

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of patients by treatment method.

Download (149KB)
3. Fig. 2. Antibacterial effect of the developed coatings against nosocomial bacterial strains : MAO, micro arcoxidation; Chit, chitosan; AM, amikacin.

Download (146KB)
4. Fig. 3. Patient 1: a, the patient with an external fixation device in a “pelvis–femur” configuration; through-and-through shrapnel wound of the proximal left femur with destruction of the greater trochanter and a displaced intertrochanteric fracture; b, radiograph after the first stage: stabilization of the injured limb using external fixation.

Download (257KB)
5. Fig. 4. Patient 1: a, radiograph after removal of the external fixation device and internal osteosynthesis with proximal locking of a femoral nail; b, the patient on the first postoperative day.

Download (245KB)
6. Fig. 5. Patient 1: follow-up radiographs six months after sequential osteosynthesis.

Download (106KB)
7. Fig. 6. Patient 1: a, six months postoperatively; b, functional outcome of treatment.

Download (146KB)
8. Fig. 7. Patient 2: a, the patient with an external fixation device; b, radiographs of the humerus on admission.

Download (157KB)
9. Fig. 8. Patient 2: a, intramedullary nail with an antibiotic coating applied via micro-arc oxidation; b, follow-up radiographs after osteosynthesis.

Download (118KB)
10. Fig. 9. Patient 2: a, follow-up radiograph six months after surgery; b, upper limb function after rehabilitation.

Download (173KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».