Distal radius fracture: review

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The presented literature review is devoted to such a pressing problem as distal radius fracture. The relevance of the review is due to the high prevalence and increasing frequency of this type of fractures, as well as a large number of controversies accompanying almost every aspect of this pathology. Despite the impressive amount of data devoted to distal radius fractures, modern scientific literature shows the absence of generally accepted algorithms for the treatment of this pathology of the upper extremity. The overwhelming majority of scientific articles on this problem have a low degree of scientific evidence. All this suggests the need for further studies with sufficient scientific evidence, primarily randomized controlled trials. Systematization and comprehension of the already known information are equally important, and this review is devoted to it. This review is analytical in nature and was conducted using medical literature databases and search resources PubMed (MEDLINE), Google Scholar and eLibrary. The following aspects are covered: anatomy, diagnosis, classification, conservative and surgical treatment, and postoperative management of fractures of the distal metaepiphysis of the radius. Special attention is paid to various surgical treatment techniques, and the advantages and disadvantages of the most common surgical methods are described.

作者简介

Dmitrii Bessonov

European Clinic of Sports Traumatology and Orthopaedics; Peoples’ Friendship University of Russia

编辑信件的主要联系方式.
Email: bessonovdmitry96@gmail.com
ORCID iD: 0000-0002-0532-9847
SPIN 代码: 2168-4297

MD

俄罗斯联邦, 7 Orlovsky lane, 129110 Moscow; Moscow

Mikhail Burtsev

European Clinic of Sports Traumatology and Orthopaedics

Email: mburtsev@emcmos.ru
ORCID iD: 0000-0003-1614-1695
SPIN 代码: 6268-0522

MD, Cand. Sci. (Medicine)

俄罗斯联邦, 7 Orlovsky lane, 129110 Moscow

Alexandr Frolov

European Clinic of Sports Traumatology and Orthopaedics; Peoples’ Friendship University of Russia

Email: afrolov@emcmos.ru
ORCID iD: 0000-0002-2973-8303
SPIN 代码: 9712-2491

MD, Cand. Sci. (Medicine)

俄罗斯联邦, 7 Orlovsky lane, 129110 Moscow; Moscow

Maksim Sautin

European Clinic of Sports Traumatology and Orthopaedics

Email: msautin@emcmos.ru
ORCID iD: 0000-0001-9933-7102
SPIN 代码: 4152-4596

MD, Cand. Sci. (Medicine)

俄罗斯联邦, 7 Orlovsky lane, 129110 Moscow

Bella Gazimieva

European Clinic of Sports Traumatology and Orthopaedics; Peoples’ Friendship University of Russia

Email: bgazimieva@emcmos.ru
ORCID iD: 0000-0002-0700-6355
SPIN 代码: 4836-9231

MD

俄罗斯联邦, 7 Orlovsky lane, 129110 Moscow; Moscow

Ivan Vasilev

European Clinic of Sports Traumatology and Orthopaedics; Peoples’ Friendship University of Russia

Email: ivasilev@emcmos.ru
ORCID iD: 0000-0002-1163-950X
SPIN 代码: 6586-0051

MD

俄罗斯联邦, 7 Orlovsky lane, 129110 Moscow; Moscow

Andrey Korolev

European Clinic of Sports Traumatology and Orthopaedics; Peoples’ Friendship University of Russia

Email: akorolev@emcmos.ru
ORCID iD: 0000-0002-8769-9963
SPIN 代码: 6980-6109

MD, Dr. Sci. (Medicine), professor

俄罗斯联邦, 7 Orlovsky lane, 129110 Moscow; Moscow

参考

  1. Court-Brown CM, Caesar B. Epidemiology of adult fractures: A review. Injury. 2006;37(8):691–7. doi: 10.1016/j.injury.2006.04.130
  2. Jerrhag D, Englund M, Karlsson MK, Rosengren BE. Epidemiology and time trends of distal forearm fractures in adults — a study of 11.2 million person-years in Sweden. BMC Musculoskelet Disord. 2017;18(1):240. doi: 10.1186/s12891-017-1596-z
  3. Azad A, Kang HP, Alluri RK, et al. Epidemiological and Treatment Trends of Distal Radius Fractures across Multiple Age Groups. Jnl Wrist Surg. 2019;8(4):305–311. doi: 10.1055/s-0039-1685205
  4. Brink P, Rikli D. Four-Corner Concept: CT-Based Assessment of Fracture Patterns in Distal Radius. Jnl Wrist Surg. 2016;5(2):147–151. doi: 10.1055/s-0035-1570462
  5. Hintringer W, Rosenauer R, Pezzei C, et al. Biomechanical considerations on a CT-based treatment-oriented classification in radius fractures. Arch Orthop Trauma Surg. 2020;140(5):595–609. doi: 10.1007/s00402-020-03405-7
  6. Hozack BA, Tosti RJ. Fragment-Specific Fixation in Distal Radius Fractures. Curr Rev Musculoskelet Med. 2019;12(2):190–197. doi: 10.1007/s12178-019-09538-6
  7. Mehta SP, MacDermid JC, Richardson J, MacIntyre NJ, Grewal R. Baseline Pain Intensity Is a Predictor of Chronic Pain in Individuals With Distal Radius Fracture. J Orthop Sports Phys Ther. 2015;45(2):119–127. doi: 10.2519/jospt.2015.5129
  8. Liverneaux PA. The minimally invasive approach for distal radius fractures and malunions. J Hand Surg Eur. 2018;43(2):121–130. doi: 10.1177/1753193417745259
  9. Maximov BI. Minimally Invasive Plate Osteosynthesis for Distal Radius Fractures: Are There Any Advantages Against Conventional Technique? Traumatology and Orthopedics of Russia. 2020;26(1):76–84. doi: 10.21823/2311-2905-2020-26-1-76-8410
  10. Minimally Invasive Plating of Distal Radius Fracture: A Series of 42 Cases and Review of Current Literature [Internet]. Available from: https://www.hindawi.com/journals/mis/2023/3534849/ Accessed: 17.02.2024.
  11. Kwon BC, Lee JK, Lee SY, Hwang JY, Seo JH. Morphometric Variations in the Volar Aspect of the Distal Radius. Clin Orthop Surg. 2018;10(4):462–467. doi: 10.4055/cios.2018.10.4.462
  12. Bergsma M, Doornberg JN, Borghorst A, et al. The Watershed Line of the Distal Radius: Cadaveric and Imaging Study of Anatomical Landmarks. Jnl Wrist Surg. 2020;9(1):044–051. doi: 10.1055/s-0039-1698452
  13. DeGeorge BRJ, Brogan DM, Shin AY. The Relationship of Volar Plate Position and Flexor Tendon Rupture: Should We Question the Validity of the Soong Classification? Plastic and Reconstructive Surgery. 2020;146(3):581–588. doi: 10.1097/PRS.0000000000007080
  14. Soong M, Earp BE, Bishop G, Leung A, Blazar P. Volar Locking Plate Implant Prominence and Flexor Tendon Rupture. J Bone Joint Surg Am. 2011;93(4):328–35. doi: 10.2106/JBJS.J.00193
  15. Obert L, Loisel F, Gasse N, Lepage D.Distal radius anatomy applied to the treatment of wrist fractures by plate: a review of recent literature. SICOT-J. 2015;1:14. doi: 10.1051/sicotj/2015012
  16. Cha SM, Shin HD, Lee SH. “Island-shape” Fractures of Lister’s tubercle have an increased risk of delayed extensor pollicis longus rupture in distal radial fractures: After surgical treatment by volar locking plate. Injury. 2018;49(10):1816–1821. doi: 10.1016/j.injury.2018.08.019
  17. Lee J-K, Bang JY, Choi YS, et al. Extensor pollicis longus tendon rupture caused by a displaced dorsal “beak” fragment of Lister’s tubercle in distal radius fractures. Handchir Mikrochir Plast Chir. 2019;51(3):199–204. doi: 10.1055/a-0826-4731
  18. Ogata Y, Ogawa T, Hirabayashi T, et al. ‘Hook’ Shape Lister Tubercle Is Associated with a Greater Incidence of Extensor Pollicis Longus Tendon Rupture after Distal Radius Fracture. J Hand Surg Asian-Pac Vol. 2022;27(5):874–880. doi: 10.1142/S242483552250076X
  19. Rikli DA, Regazzoni P. Fractures of the distal end of the radius treated by internal fixation and early function. The Journal of Bone and Joint Surgery. British volume. 1996;78-B(4):588–592.
  20. Gunaratne R, Nazifi O, D’Souza H, Tay A. Optimal screw length in volar locking plate osteosynthesis for distal radius fractures: a systematic review. ANZ J Surg. 2022;92(4):674–684. doi: 10.1111/ans.17390
  21. Gray RRL, Foremny G, Lee S, Greditzer T. Radiography of the Distal Radius. Journal of Orthopaedic Trauma. 2021;35:s21–s26. doi: 10.1097/BOT.0000000000002206.
  22. Soong M, Got C, Katarincic J, Akelman E. Fluoroscopic Evaluation of Intra-Articular Screw Placement During Locked Volar Plating of the Distal Radius: A Cadaveric Study. The Journal of Hand Surgery. 2008;33(10):1720–1723. doi: 10.1016/j.jhsa.2008.07.021
  23. Kwon BC, Lee YM, Lee JW, Choi HG. Can we safely place the distal volar locking plate screws into the subchondral zone of a distal radius fracture using a 45° supination oblique view under fluoroscopic guidance? Injury. 2023;54(3):947–953. doi: 10.1016/j.injury.2023.01.026
  24. Klein JS, Mijares MR, Chen D, et al. Radiographic Evaluation of the Distal Radioulnar Joint: Technique to Detect Sigmoid Notch Intra-Articular Screw Breach in Distal Radius Fractures. Techniques in Orthopaedics. 2020;35(1):73–77. doi: 10.1097/BTO.0000000000000318
  25. Esworthy GP, Johnson NA, Divall P, Dias JJ. Origins of the threshold for surgical intervention in intra-articular distal radius fractures. The Bone & Joint Journal. 2021;103-B(9):1457–1461. doi: 10.1302/0301-620X.103B9.BJJ-2021-0313.R1
  26. Hruby LA, Haider T, Laggner R, et al. Standard radiographic assessments of distal radius fractures miss involvement of the distal radioulnar joint: a diagnostic study. Arch Orthop Trauma Surg. 2022;142(6):1075–1082. doi: 10.1007/s00402-021-03801-7
  27. Jeffrey CR, Bindra RR, Evanoff BA, et al. Radiographic evaluation of osseous displacement following intra-articular fractures of the distal radius: Reliability of plain radiography versus computed tomography. The Journal of Hand Surgery. 1997;22(5):792–800. doi: 10.1016/s0363-5023(97)80071-8
  28. Kleinlugtenbelt YV, Groen SR, Ham SJ, et al. Classification systems for distal radius fractures: Does the reliability improve using additional computed tomography? Acta Orthopaedica. 2017;88(6):681–687.
  29. Diong TW, Haflah NHM, Kassim AYM, Habshi SMIA, Shukur MH. Use of Computed Tomography in Determining the Occurrence of Dorsal and Intra-articular Screw Penetration in Volar Locking Plate Osteosynthesis of Distal Radius Fracture. J Hand Surg Asian-Pac. 2018;23(1):26–32. doi: 10.1142/S2424835518500030
  30. Halvachizadeh S, Berk T, Pieringer A, et al. Is the Additional Effort for an Intraoperative CT Scan Justified for Distal Radius Fracture Fixations? A Comparative Clinical Feasibility Study. JCM. 2020;9(7):2254. doi: 10.3390/jcm9072254
  31. Shehovych A, Salar O, Meyer C, Ford DJ. Adult distal radius fractures classification systems: essential clinical knowledge or abstract memory testing? Annals. 2016;98(8):525–531. doi: 10.1308/rcsann.2016.0237
  32. Wæver D, Madsen ML, Rölfing JHD, et al. Distal radius fractures are difficult to classify. Injury. 2018;49:S29–S32. doi: 10.1016/S0020-1383(18)30299-7
  33. Bruyere A, Vernet P, Botero SS, et al. Conservative treatment of distal fractures after the age of 65: a review of literature. Eur J Orthop Surg Traumatol. 2018;28(8):1469–1475. doi: 10.1007/s00590-018-2150-x
  34. He B, Tian X, Ji G, Han A. Comparison of outcomes between nonsurgical and surgical treatment of distal radius fracture: a systematic review update and meta-analysis. Arch Orthop Trauma Surg. 2020;140(8):1143–1153. doi: 10.1007/s00402-020-03487-3
  35. Ochen Y, Peek J, van der Velde D, et al. Operative vs Nonoperative Treatment of Distal Radius Fractures in Adults: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020;3(4):e203497. doi: 10.1001/jamanetworkopen.2020.3497
  36. Gutiérrez-Espinoza H, Araya-Quintanilla F, Olguín-Huerta C, et al. Effectiveness of surgical versus conservative treatment of distal radius fractures in elderly patients: A systematic review and meta-analysis. Orthopaedics & Traumatology: Surgery & Research. 2022;108(5):103323. doi: 10.1016/j.otsr.2022.103323
  37. Rupp M, Cambon-Binder A, Alt V, Feron JM. Is percutaneous pinning an outdated technique for distal radius fractures? Injury. 2019;50(Suppl 1):S30–S35. doi: 10.1016/j.injury.2019.03.048
  38. Chaudhry H, Kleinlugtenbelt YV, Mundi R, et al. Are Volar Locking Plates Superior to Percutaneous K-wires for Distal Radius Fractures? A Meta-analysis. Clinical Orthopaedics and Related Research. 2015;473(9):3017–27. doi: 10.1007/s11999-015-4347-1
  39. Franceschi F, Franceschetti E, Paciotti M, et al. Volar locking plates versus K-wire/pin fixation for the treatment of distal radial fractures: a systematic review and quantitative synthesis. Br Med Bull. 2015;115(1):91–110. doi: 10.1093/bmb/ldv015
  40. Zong S-L, Kan SL, Su LX, Wang B. Meta-analysis for dorsally displaced distal radius fracture fixation: volar locking plate versus percutaneous Kirschner wires. Journal of Orthopaedic Surgery and Research. 2015;10(1):108. doi: 10.1186/s13018-015-0252-2
  41. Costa ML, Achten J, Rangan A, Lamb SE, Parsons NR. Percutaneous fixation with Kirschner wires versus volar locking-plate fixation in adults with dorsally displaced fracture of distal radius: five-year follow-up of a randomized controlled trial. The Bone & Joint Journal. 2019;101-B(8):978–983. doi: 10.1302/0301-620X.101B8.BJJ-2018-1285.R1
  42. Nandyala SV, Giladi AM, Parker AM, Rozental TD. Comparison of Direct Perioperative Costs in Treatment of Unstable Distal Radial Fractures. J Bone Joint Surg Am. 2018;100(9):786–792. doi: 10.2106/JBJS.17.00688
  43. Fu Q, Zhu L, Yang P, Chen A. Volar Locking Plate versus External Fixation for Distal Radius Fractures: A Meta-analysis of Randomized Controlled Trials. IJOO. 2018;52(6):602–610. doi: 10.4103/ortho.IJOrtho_601_16.
  44. Gou Q, Xiong X, Cao D, He Y, Li X. Volar locking plate versus external fixation for unstable distal radius fractures: a systematic review and meta-analysis based on randomized controlled trials. BMC Musculoskelet Disord. 2021;22(1):433. doi: 10.1186/s12891-021-04312-7
  45. Gouk CJC, Bindra RR, Tarrant DJ, Thomas MJE. Volar locking plate fixation versus external fixation of distal radius fractures: a meta-analysis. J Hand Surg Eur Vol. 2018;43(9):954–960. doi: 10.1177/1753193417743936
  46. Hammer O-L, Clementsen S, Hast J, et al. Volar Locking Plates Versus Augmented External Fixation of Intra-Articular Distal Radial Fractures: Functional Results from a Randomized Controlled Trial. The Journal of Bone and Joint Surgery. 2019;101(4):311–321. doi: 10.2106/JBJS.18.00014
  47. Huang Y-Y, Lin TY, Chen CH, Chou YC, Su CY. Surgical outcomes of elderly patients aged more than 80 years with distal radius fracture: comparison of external fixation and locking plate. BMC Musculoskelet Disord. 2020;21(1):91. doi: 10.1186/s12891-020-3101-3
  48. Saving J, Enocson A, Ponzer S, Mellstrand Navarro C. External Fixation Versus Volar Locking Plate for Unstable Dorsally Displaced Distal Radius Fractures — A 3-Year Follow-Up of a Randomized Controlled Study. The Journal of Hand Surgery. 2019;44(1):18–26. doi: 10.1016/j.jhsa.2018.09.015
  49. Sharma A, Pathak S, Sandhu H, et al. Prospective Randomized Study Comparing the External Fixator and Volar Locking Plate in Intraarticular Distal Radius Fractures: Which Is Better? Cureus. 2020;12(2):e6849. doi: 10.7759/cureus.6849
  50. Wang J, Lu Y, Cui Y, Wei X, Sun J. Is volar locking plate superior to external fixation for distal radius fractures? A comprehensive meta-analysis. Acta Orthopaedica et Traumatologica Turcica. 2018;52(5):334–342. doi: 10.1016/j.aott.2018.06.001
  51. Yanagisawa Y, Ito A, Hara Y, et al. Initial clinical trial of pins coated with fibroblast growth factor-2–apatite composite layer in external fixation of distal radius fractures. Journal of Orthopaedics. 2019;16(1):69–73. doi: 10.1016/j.jor.2018.12.012
  52. Diaz-Garcia RJ, Chung KC. The Evolution of Distal Radius Fracture Management: A Historical Treatise. Hand Clinics. 2012;28(2):105–111. doi: 10.1016/j.hcl.2012.02.007
  53. Rosenauer R, Pezzei C, Quadlbauer S, et al. Complications after operatively treated distal radius fractures. Arch Orthop Trauma Surg. 2020;140(5):665–673. doi: 10.1007/s00402-020-03372-z
  54. Devaux N, Henning J, Haefeli M, Honigmann P. The Retinaculum Flap for Dorsal Fixation of Distal Radius Fractures. The Journal of Hand Surgery. 2018;43(4):391.e1–391.e7. doi: 10.1016/j.jhsa.2018.01.011
  55. Ghafoor H, Haefeli M, Steiger R, Honigmann P. Dorsal Plate Osteosynthesis in Simple and Complex Fractures of the Distal Radius: A Radiological Analysis of 166 Cases. J Wrist Surg. 2022;11(2):134–144. doi: 10.1055/s-0041-1735839
  56. Kumar S, Khan AN, Sonanis SV. Radiographic and functional evaluation of low profile dorsal versus volar plating for distal radius fractures. Journal of Orthopaedics. 2016;13(4):376–382. doi: 10.1016/j.jor.2016.06.017
  57. Disseldorp DJG, Hannemann PF, Poeze M, Brink PR. Dorsal or Volar Plate Fixation of the Distal Radius: Does the Complication Rate Help Us to Choose? J Wrist Surg. 2016;5(3):202–210. doi: 10.1055/s-0036-1571842
  58. Mauck BM, Swigler CW. Evidence-Based Review of Distal Radius Fractures. Orthopedic Clinics of North America. 2018;49(2):211–222. doi: 10.1016/j.ocl.2017.12.001
  59. Yamamoto M, Fujihara Y, Fujihara N, Hirata H. A systematic review of volar locking plate removal after distal radius fracture. Injury. 2017;48(12):2650–2656. doi: 10.1016/j.injury.2017.10.010
  60. Landgren M, Abramo A, Geijer M, Kopylov P, Tägil M. Fragment-Specific Fixation Versus Volar Locking Plates in Primarily Nonreducible or Secondarily Redisplaced Distal Radius Fractures: A Randomized Controlled Study. The Journal of Hand Surgery. 2017;42(3):156–165.e1. doi: 10.1016/j.jhsa.2016.12.001
  61. Yao J, Fogel N. Arthroscopy in Distal Radius Fractures. Hand Clinics. 2021;37(2):279–291. doi: 10.1016/j.hcl.2021.02.010
  62. Ardouin L, Durand A, Gay A, Leroy M. Why do we use arthroscopy for distal radius fractures? Eur J Orthop Surg Traumatol. 2018;28(8):1505–1514. doi: 10.1007/s00590-018-2263-2
  63. Kastenberger T, Kaiser P, Schmidle G, et al. Arthroscopic assisted treatment of distal radius fractures and concomitant injuries. Arch Orthop Trauma Surg. 2020;140(5):623–638. doi: 10.1007/s00402-020-03373-y
  64. Saab M, Guerre E, Chantelot C, et al. Contribution of arthroscopy to the management of intra-articular distal radius fractures: Knowledge update based on a systematic 10-year literature review. Orthopaedics & Traumatology: Surgery & Research. 2019;105(8):1617–1625. doi: 10.1016/j.otsr.2019.06.016
  65. Selles CA, Mulders MAM, Colaris JW, Arthroscopic debridement does not enhance surgical treatment of intra-articular distal radius fractures: a randomized controlled trial. J Hand Surg Eur Vol. 2020;45(4):327–332. doi: 10.1177/1753193419866128
  66. Smeraglia F, Del Buono A, Maffulli N. Wrist arthroscopy in the management of articular distal radius fractures. Br Med Bull. 2016;119(1):157–165. doi: 10.1093/bmb/ldw032
  67. Bhan K, Hasan K, Pawar AS, Patel R. Rehabilitation Following Surgically Treated Distal Radius Fractures: Do Immobilization and Physiotherapy Affect the Outcome? Cureus. 2021;13(7):e16230. doi: 10.7759/cureus.16230
  68. Quadlbauer S, Pezzei C, Jurkowitsch J, et al. Rehabilitation after distal radius fractures: is there a need for immobilization and physiotherapy? Arch Orthop Trauma Surg. 2020;140(5):651–663. doi: 10.1007/s00402-020-03367-w
  69. Zeckey C, Späth A, Kieslich S, et al. Early Mobilization Versus Splinting After Surgical Management of Distal Radius Fractures. Deutsches Ärzteblatt international. 2020;117(26):445–451. doi: 10.3238/arztebl.2020.0445
  70. Quadlbauer S, Pezzei C, Jurkowitsch J, et al. Immediate mobilization of distal radius fractures stabilized by volar locking plate results in a better short-term outcome than a five week immobilization: A prospective randomized trial; 2022 [Internet]. Available from: https://journals.sagepub.com/doi/full/10.1177/02692155211036674 Accessed: 16.02.2024.
  71. Walker LC, O’Connor D, Richards SW, Southgate JJ. The “COVID-19 Approach” to Distal Radius Fracture Management. J Wrist Surg. 2023;12(2):121–127. doi: 10.1055/s-0042-1756496
  72. Soares F, Paranhos D, Campos F, Gasparini A, Fernandes L. Supervised exercise therapy program vs non-supervised exercise therapy program after distal radius fracture: A systematic review and meta-analysis. Journal of Hand Therapy. 2023;36(4):860–876. doi: 10.1016/j.jht.2023.06.009
  73. Kamal RN, Shapiro LM. AAOS/ASSH Clinical Practice Guideline Summary Management of Distal Radius Fractures. J Am Acad Orthop Surg. 2022;30(4):e480–e486.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Anterior surface of the radius with the watershed line (WS) and pronator quadratus (PQ) line indicated.

下载 (102KB)
3. Fig. 2. The three-column model by D. Rikli and P. Regazzoni.

下载 (61KB)
4. Fig. 3. Dorsal tangential view: a — schematic representation, b — C-arm image.

下载 (223KB)

版权所有 © Eco-Vector, 2024



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».