Allosteric Regulators of the Thyroid-Stimulating Hormone Receptor – New Horizons in the Pharmacology of Thyroid Pathology
- 作者: Shpakov A.O1, Derkach K.V1
-
隶属关系:
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- 期: 卷 111, 编号 12 (2025)
- 页面: 1907–1932
- 栏目: REVIEW
- URL: https://ogarev-online.ru/0869-8139/article/view/362819
- DOI: https://doi.org/10.7868/S2658655X25120036
- ID: 362819
如何引用文章
详细
作者简介
A. Shpakov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: alex_shpakov@list.ru
St. Petersburg, Russia
K. Derkach
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSt. Petersburg, Russia
参考
- Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE (2016) HypothalamusPituitary-Thyroid Axis. Compr Physiol 6(3): 1387–1428. http://doi.org/10.1002/cphy.c150027
- Contreras-Jurado C (2025) Thyroid Hormones and Co-workers: An Overview. Methods Mol Biol 2876: 3–16. http://doi.org/10.1007/978-1-0716-4252-8_1
- Feldt-Rasmussen U, Effraimidis G, Klose M (2021) The hypothalamus-pituitary-thyroid (HPT)axis and its role in physiology and pathophysiology of other hypothalamus-pituitary functions. Mol Cell Endocrinol 525: 111173. http://doi.org/10.1016/j.mce.2021.111173
- Tuncel M (20117) Thyroid Stimulating Hormone Receptor. Mol Imaging Radionucl Ther 26(Suppl 1): 87–91. http://doi.org/10.4274/2017.26.suppl.10
- Naicker M, Naidoo S (2022) Cellular and molecular distribution of thyroid-specific proteins, thyroid-stimulating hormone receptor (TSH-R) and thyroglobulin (TG) in the central nervous system. Neurochem Int 155: 105305. http://doi.org/10.1016/j.neuint.2022.105305
- Lanzolla G, Marinò M, Menconi F (2024) Graves disease: latest understanding of pathogenesis and treatment options. Nat Rev Endocrinol 20(11): 647–660. http://doi.org/10.1038/s41574-024-01016-5
- Gluvic Z, Obradovic M, Stewart AJ, Essack M, Pitt SJ, Samardzic V, Soskic S, Gojobori T, Isenovic ER (2021) Levothyroxine Treatment and the Risk of Cardiac Arrhythmias – Focus on the Patient Submitted to Thyroid Surgery. Front Endocrinol (Lausanne) 12: 758043. http://doi.org/10.3389/fendo.2021.758043
- Jin M, Jang A, Kim CA, Kim TY, Kim WB, Shong YK, Jeon MJ, Kim WG (2023) Long-term followup result of antithyroid drug treatment of Graves' hyperthyroidism in a large cohort. Eur Thyroid J 12(2): e220226. http://doi.org/10.1530/ETJ-22-0226
- Fan QR, Hendrickson WA (2005) Structural biology of glycoprotein hormones and their receptors. Endocrine 26(3): 179–188. http://doi.org/10.1385/endo:26:3:179
- Fröhlich E, Wahl R (2023) Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation. Int J Mol Sci 24(14): 11699. http://doi.org/10.3390/ijms241411699
- Wide L, Eriksson K (2019) Unique Pattern of N-Glycosylation, Sialylation, and Sulfonation on TSH Molecules in Serum of Children Up to 18 Months. J Clin Endocrinol Metab 104(10): 4651–4659. http://doi.org/10.1210/jc.2018-02576
- Wide L, Eriksson K (2021) Thyrotropin N-glycosylation and Glycan Composition in Severe Primary Hypothyroidism. J Endocr Soc 5(4): bvab006. http://doi.org/10.1210/jendso/bvab006
- Estrada JM, Soldin D, Buckey TM, Burman KD, Soldin OP (2014) Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice. Thyroid 24(3): 411–423. http://doi.org/10.1089/thy.2013.0119
- Querat B (2021) Unconventional Actions of Glycoprotein Hormone Subunits: A Comprehensive Review. Front Endocrinol (Lausanne) 12: 731966. http://doi.org/10.3389/fendo.2021.731966
- Wondisford FE (2002) The thyroid axis just got more complicated. J Clin Invest 109(11): 1401–1402. http://doi.org/10.1172/JCI15865
- Brokken LJ, Scheenhart JW, Wiersinga WM, Prummel MF (2001) Suppression of serum TSH by Graves' Ig: evidence for a functional pituitary TSH receptor. J Clin Endocrinol Metab 86(10): 4814–4817. http://doi.org/10.1210/jcem.86.10.7922
- Prummel MF, Brokken LJ, Wiersinga WM (2004) Ultra short-loop feedback control of thyrotropin secretion. Thyroid 14(10): 825–829. http://doi.org/10.1089/thy.2004.14.825
- Yang Q, Li J, Kou C, Zhang L, Wang X, Long Y, Ni J, Li S, Zhang H (2022) Presence of TSHR in NK Cells and Action of TSH on NK Cells. Neuroimmunomodulation 29(1): 77–84. http://doi.org/10.1159/000516925
- Mendonça-Reis E, Guimarães-Nobre CC, Teixeira-Alves LR, Miranda-Alves L, Berto-Junior C (2024) TSH Receptor Reduces Hemoglobin S Polymerization and Increases Deformability and Adhesion of Sickle Erythrocytes. Anemia 2024: 7924015. http://doi.org/10.1155/2024/7924015
- Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G (2017) Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Front Endocrinol (Lausanne) 8: 86. http://doi.org/10.3389/fendo.2017.00086
- Duan J, Xu P, Cheng X, Mao C, Croll T, He X, Shi J, Luan X, Yin W, You E, Liu Q, Zhang S, Jiang H, Zhang Y, Jiang Y, Xu HE (2021) Structures of full-length glycoprotein hormone receptor signalling complexes. Nature 598(7882): 688–692. http://doi.org/10.1038/s41586-021-03924-2
- Duan J, Xu P, Luan X, Ji Y, He X, Song N, Yuan Q, Jin Y, Cheng X, Jiang H, Zheng J, Zhang S, Jiang Y, Xu HE (2022) Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature 609(7928): 854–859. http://doi.org/10.1038/s41586-022-05173-3
- Xiang P, Latif R, Morshed S, Davies TF (2024) Hypothyroidism Induced by a TSH Receptor Peptide-Implications for Thyroid Autoimmunity. Thyroid 34(12): 1513–1521. http://doi.org/10.1089/thy.2024.0089
- Krieger CC, Neumann S, Gershengorn MC (2020) Is There Evidence for IGF1R-Stimulating Abs in Graves' Orbitopathy Pathogenesis? Int J Mol Sci 21(18): 6561. http://doi.org/10.3390/ijms21186561
- Faust B, Billesbølle CB, Suomivuori CM, Singh I, Zhang K, Hoppe N, Pinto AFM, Diedrich JK, Muftuoglu Y, Szkudlinski MW, Saghatelian A, Dror RO, Cheng Y, Manglik A (2022) Autoantibody mimicry of hormone action at the thyrotropin receptor. Nature 609(7928): 846–853. http://doi.org/10.1038/s41586-022-05159-1
- Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, Okosieme OE (2018) Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 14(5): 301–316. http://doi.org/10.1038/nrendo.2018.18
- Boutin A, Gershengorn MC, Neumann S (2020) β-Arrestin 1 in Thyrotropin Receptor Signaling in Bone: Studies in Osteoblast-Like Cells. Front Endocrinol (Lausanne) 11: 312. http://doi.org/10.3389/fendo.2020.00312
- Vieira IH, Rodrigues D, Paiva I (2022) The Mysterious Universe of the TSH Receptor. Front Endocrinol (Lausanne) 13: 944715. http://doi.org/10.3389/fendo.2022.944715
- Laugwitz KL, Allgeier A, Offermanns S, Spicher K, Van Sande J, Dumont JE, Schultz G (1996) The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc Natl Acad Sci U S A 93(1): 116–120. http://doi.org/10.1073/pnas.93.1.116
- Büch TR, Biebermann H, Kalwa H, Pinkenburg O, Hager D, Barth H, Aktories K, Breit A, Gudermann T (2008) G13-dependent activation of MAPK by thyrotropin. J Biol Chem 283(29): 20330–20341. http://doi.org/10.1074/jbc.M800211200
- Boutin A, Krieger CC, Marcus-Samuels B, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC (2020) TSH Receptor Homodimerization in Regulation of cAMP Production in Human Thyrocytes in vitro. Front Endocrinol (Lausanne) 11: 276. http://doi.org/10.3389/fendo.2020.00276
- Krause G, Eckstein A, Schülein R (2020) Modulating TSH Receptor Signaling for Therapeutic Benefit. Eur Thyroid J 9(Suppl 1): 66–77. http://doi.org/10.1159/000511871
- Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, Marians RC, Davies TF, Zannini MS, De Felice M, Di Lauro R (2002) Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A 99(24): 15462–15467. http://doi.org/10.1073/pnas.242328999
- Bruno R, Ferretti E, Tosi E, Arturi F, Giannasio P, Mattei T, Scipioni A, Presta I, Morisi R, Gulino A, Filetti S, Russo D (2005) Modulation of thyroid-specific gene expression in normal and nodular human thyroid tissues from adults: an in vivo effect of thyrotropin. J Clin Endocrinol Metab 90(10): 5692–5697. http://doi.org/10.1210/jc.2005-0800
- Michalek K, Morshed SA, Latif R, Davies TF (2009) TSH receptor autoantibodies. Autoimmun Rev 9(2): 113–116. http://doi.org/10.1016/j.autrev.2009.03.012
- Boutin A, Eliseeva E, Gershengorn MC, Neumann S (2014) β-Arrestin-1 mediates thyrotropinenhanced osteoblast differentiation. FASEB J 28(8): 3446–3455. http://doi.org/10.1096/fj.14-251124
- Cui X, Wang F, Liu C (2023) A review of TSHR- and IGF-1R-related pathogenesis and treatment of Graves' orbitopathy. Front Immunol 14: 1062045. http://doi.org/10.3389/fimmu.2023.1062045
- Bonomi M, Busnelli M, Persani L, Vassart G, Costagliola S (2006) Structural differences in the hinge region of the glycoprotein hormone receptors: evidence from the sulfated tyrosine residues. Mol Endocrinol 20(12): 3351–3363. http://doi.org/10.1210/me.2005-0521
- Mueller S, Szkudlinski MW, Schaarschmidt J, Günther R, Paschke R, Jaeschke H (2011) Identification of novel TSH interaction sites by systematic binding analysis of the TSHR hinge region. Endocrinology 152(8): 3268–3278. http://doi.org/10.1210/en.2011-0153
- Krause G, Marcinkowski P (2018) Intervention Strategies into Glycoprotein Hormone Receptors for Modulating (Mal-)function, with Special Emphasis on the TSH Receptor. Horm Metab Res 50(12):894–907. http://doi.org/10.1055/a-0749-6528 Erratum in: (2018) Horm Metab Res 50(12): e8. http://doi.org/10.1055/a-0789-9317
- Yeste D, Baz-Redón N, Antolín M, Garcia-Arumí E, Mogas E, Campos-Martorell A, GonzálezLlorens N, Aguilar-Riera C, Soler-Colomer L, Clemente M, Fernández-Cancio M, CamatsTarruella N (2024) Genetic and Functional Studies of Patients with Thyroid Dyshormonogenesis and Defects in the TSH Receptor (TSHR). Int J Mol Sci 25(18): 10032. http://doi.org/10.3390/ijms251810032
- Bock A, Bermudez M (2021) Allosteric coupling and biased agonism in G protein-coupled receptors. FEBS J 288(8): 2513–2528. http://doi.org/10.1111/febs.15783
- Shpakov AO (2023) Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 24(7): 6187. http://doi.org/10.3390/ijms24076187
- Shpakov AO (2024) Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. Front Biosci (Landmark Ed) 29(9): 313. http://doi.org/10.31083/j.fbl2909313
- Schulze A, Kleinau G, Neumann S, Scheerer P, Schöneberg T, Brüser A (2020) The intramolecular agonist is obligate for activation of glycoprotein hormone receptors. FASEB J 34(8): 11243–11256. http://doi.org/10.1096/fj.202000100R
- Krause G, Kreuchwig A, Kleinau G (2012) Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor. PLoS One 7(12): e52920. http://doi.org/10.1371/journal.pone.0052920
- Vlaeminck-Guillem V, Ho SC, Rodien P, Vassart G, Costagliola S (2002) Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist. Mol Endocrinol 16(4): 736–746. http://doi.org/10.1210/mend.16.4.0816
- Brüser A, Schulz A, Rothemund S, Ricken A, Calebiro D, Kleinau G, Schöneberg T (2016) The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases. J Biol Chem 291(2): 508–520. http://doi.org/10.1074/jbc.M115.701102
- Schaarschmidt J, Nagel MBM, Huth S, Jaeschke H, Moretti R, Hintze V, von Bergen M, Kalkhof S, Meiler J, Paschke R (2016) Rearrangement of the Extracellular Domain/Extracellular Loop 1 Interface Is Critical for Thyrotropin Receptor Activation. J Biol Chem 291(27): 14095–14108. http://doi.org/10.1074/jbc.M115.709659
- He X, Duan J, Ji Y, Zhao L, Jiang H, Jiang Y, Eric Xu H, Cheng X (2022) Hinge region mediates signal transmission of luteinizing hormone and chorionic gonadotropin receptor. Comput Struct Biotechnol J 20: 6503–6511. http://doi.org/10.1016/j.csbj.2022.11.039
- Lazim R, Suh D, Lee JW, Vu TNL, Yoon S, Choi S (2021) Structural Characterization of ReceptorReceptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers. Int J Mol Sci 22(6): 3241. http://doi.org/10.3390/ijms22063241
- Mirchandani-Duque M, Choucri M, Hernández-Mondragón JC, Crespo-Ramírez M, PérezOlives C, Ferraro L, Franco R, Pérez de la Mora M, Fuxe K, Borroto-Escuela DO (2024) Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions. Membranes (Basel) 14(5): 96. http://doi.org/10.3390/membranes14050096
- Ulloa-Aguirre A, Zariñán T (2016) The Follitropin Receptor: Matching Structure and Function. Mol Pharmacol 90(5):596–608. http://doi.org/10.1124/mol.116.104398 Erratum in: (2017) Mol Pharmacol 91(1): 48. http://doi.org/10.1124/mol.111.104398err
- Latif R, Michalek K, Davies TF (2010) Subunit interactions influence TSHR multimerization. Mol Endocrinol 24(10): 2009–2018. http://doi.org/10.1210/me.2010-0001
- Krieger CC, Boutin A, Neumann S, Gershengorn MC (2022) Proximity ligation assay to study TSH receptor homodimerization and crosstalk with IGF-1 receptors in human thyroid cells. Front Endocrinol (Lausanne) 13: 989626. http://doi.org/10.3389/fendo.2022.989626
- Allen MD, Neumann S, Gershengorn MC (2011) Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling. FASEB J 25(10): 3687–3694. http://doi.org/10.1096/fj.11-188961
- Latif R, Ando T, Davies TF (2007) Lipid rafts are triage centers for multimeric and monomeric thyrotropin receptor regulation. Endocrinology 148(7): 3164–3175. http://doi.org/10.1210/en.2006-1580
- Mezei M, Latif R, Davies TF (2022) Modeling TSH Receptor Dimerization at the Transmembrane Domain. Endocrinology 163(12): bqac168. http://doi.org/10.1210/endocr/bqac168
- De Gregorio F, Pellegrino M, Picchietti S, Belardinelli MC, Taddei AR, Fausto AM, Rossi M, Maggio R, Giorgi F (2011) The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells. Toxicol Appl Pharmacol 253(2): 121–129. http://doi.org/10.1016/j.taap.2011.03.018
- Calebiro D, de Filippis T, Lucchi S, Covino C, Panigone S, Beck-Peccoz P, Dunlap D, Persani L (2005) Intracellular entrapment of wild-type TSH receptor by oligomerization with mutants linked to dominant TSH resistance. Hum Mol Genet 14(20): 2991–3002. http://doi.org/10.1093/hmg/ddi329
- Tenenbaum-Rakover Y, Grasberger H, Mamanasiri S, Ringkananont U, Montanelli L, Barkoff MS, Dahood AM, Refetoff S (2009) Loss-of-function mutations in the thyrotropin receptor gene as a major determinant of hyperthyrotropinemia in a consanguineous community. J Clin Endocrinol Metab 94(5): 1706–1712. http://doi.org/10.1210/jc.2008-1938
- Biebermann H, Winkler F, Handke D, Teichmann A, Gerling B, Cameron F, Eichhorst J, Grüters A, Wiesner B, Kühnen P, Krude H, Kleinau G (2012) New pathogenic thyrotropin receptor mutations decipher differentiated activity switching at a conserved helix 6 motif of family A GPCR. J Clin Endocrinol Metab 97(2): E228–Е232. http://doi.org/10.1210/jc.2011-2106
- Zoenen M, Urizar E, Swillens S, Vassart G, Costagliola S (2012) Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers. Nat Commun 3: 1007. http://doi.org/10.1038/ncomms1991
- Latif R, Ali MR, Mezei M, Davies TF (2015) Transmembrane domains of attraction on the TSH receptor. Endocrinology. 156(2): 488–498. http://doi.org/10.1210/en.2014-1509
- Ashim J, Seo MJ, Ji S, Heo J, Yu W (2025) Research approaches for exploring the hidden conversations of G protein-coupled receptor transactivation. Mol Pharmacol 107(6): 100043. http://doi.org/10.1016/j.molpha.2025.100043
- Lin HH (2025) An Alternative Mode of GPCR Transactivation: Activation of GPCRs by Adhesion GPCRs. Int J Mol Sci 26(2): 552. http://doi.org/10.3390/ijms26020552
- Zhang Y, Tan Y, Zhang Z, Cheng X, Duan J, Li Y (2024) Targeting Thyroid-Stimulating Hormone Receptor: A Perspective on Small-Molecule Modulators and Their Therapeutic Potential. J Med Chem 67(18): 16018–16034. http://doi.org/10.1021/acs.jmedchem.4c01525
- Derkach KV, Pechalnova AS, Sorokoumov VN, Zorina II, Morina IY, Chernenko EE, Didenko EA, Romanova IV, Shpakov AO (2025) Effect of a Low-Molecular-Weight Allosteric Agonist of the Thyroid-Stimulating Hormone Receptor on Basal and Thyroliberin-Stimulated Activity of Thyroid System in Diabetic Rats. Int J Mol Sci 26(2): 703. http://doi.org/10.3390/ijms26020703
- Shpakova EA, Shpakov AO, Chistyakova OV, Moyseyuk IV, Derkach KV (2012) Biological activity in vitro and in vivo of peptides corresponding to the third intracellular loop of thyrotropin receptor. Dokl Biochem Biophys 443: 64–67. http://doi.org/10.1134/S1607672912020020
- Derkach KV, Shpakova EA, Titov AK, Shpakov AO (2015) Intranasal and Intramuscular Administration of Lysine-Palmitoylated Peptide 612–627 of Thyroid-Stimulating Hormone Receptor Increases the Level of Thyroid Hormones in Rats. Int J Pept Res Ther 21: 249–260. http://doi.org/10.1007/s10989-014-9452-6
- van Straten NC, Schoonus-Gerritsma GG, van Someren RG, Draaijer J, Adang AE, Timmers CM, Hanssen RG, van Boeckel CA (2002) The first orally active low molecular weight agonists for the LH receptor: thienopyr(im)idines with therapeutic potential for ovulation induction. Chembiochemistry 3(10): 1023–1026. http://doi.org/10.1002/1439-7633(20021004)3:10<1023::AID-CBIC1023>3.0.CO;2-9
- Moore S, Jaeschke H, Kleinau G, Neumann S, Costanzi S, Jiang JK, Childress J, Raaka BM, Colson A, Paschke R, Krause G, Thomas CJ, Gershengorn MC (2006) Evaluation of smallmolecule modulators of the luteinizing hormone/choriogonadotropin and thyroid stimulating hormone receptors: structure-activity relationships and selective binding patterns. J Med Chem 49(13): 3888–3896. http://doi.org/10.1021/jm060247s
- Hoyer I, Haas AK, Kreuchwig A, Schülein R, Krause G (2013) Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists. Biochem Soc Trans 41(1): 213–217. http://doi.org/10.1042/BST20120319
- Neumann S, Kleinau G, Costanzi S, Moore S, Jiang JK, Raaka BM, Thomas CJ, Krause G, Gershengorn MC (2008) A low-molecular-weight antagonist for the human thyrotropin receptor with therapeutic potential for hyperthyroidism. Endocrinology 149(12): 5945–5950. http://doi.org/10.1210/en.2008-0836
- Neumann S, Huang W, Titus S, Krause G, Kleinau G, Alberobello AT, Zheng W, Southall NT, Inglese J, Austin CP, Celi FS, Gavrilova O, Thomas CJ, Raaka BM, Gershengorn MC (2009) Smallmolecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proc Natl Acad Sci U S A 106(30): 12471–12476. http://doi.org/10.1073/pnas.0904506106
- Neumann S, Gershengorn MC (2011) Small molecule TSHR agonists and antagonists. Ann Endocrinol (Paris) 72(2): 74–76. http://doi.org/10.1016/j.ando.2011.03.002
- Allen MD, Neumann S, Gershengorn MC (2011) Small-molecule thyrotropin receptor agonist activates naturally occurring thyrotropin-insensitive mutants and reveals their distinct cyclic adenosine monophosphate signal persistence. Thyroid 21(8): 907–912. http://doi.org/10.1089/thy.2011.0025
- Latif R, Ali MR, Ma R, David M, Morshed SA, Ohlmeyer M, Felsenfeld DP, Lau Z, Mezei M, Davies TF (2015) New small molecule agonists to the thyrotropin receptor. Thyroid 25(1): 51–62. http://doi.org/10.1089/thy.2014.0119
- Latif R, Morshed SA, Ma R, Tokat B, Mezei M, Davies TF (2020) A Gq Biased Small Molecule Active at the TSH Receptor. Front Endocrinol (Lausanne) 11: 372. http://doi.org/10.3389/fendo.2020.00372
- Neumann S, Malik SS, Marcus-Samuels B, Eliseeva E, Jang D, Klubo-Gwiezdzinska J, Krieger CC, Gershengorn MC (2020) Thyrotropin Causes Dose-dependent Biphasic Regulation of cAMP Production Mediated by Gs and Gi/o Proteins. Mol Pharmacol 97(1): 2–8. http://doi.org/10.1124/mol.119.117382
- Bakhtyukov AA, Derkach KV, Fokina EA, Sorokoumov VN, Zakharova IO, Bayunova LV, Shpakov AO (2022) Development of Low-Molecular-Weight Allosteric Agonist of ThyroidStimulating Hormone Receptor with Thyroidogenic Activity. Dokl Biochem Biophys 503(1): 67–70. http://doi.org/10.1134/S1607672922020016
- Derkach KV, Sorokoumov VN, Morina IY, Kuznetsova VS, Romanova IV, Shpakov AO (2024) Regulatory Effects of 5-Day Oral and Intraperitoneal Administration of a Thienopyrimidine Derivative on the Thyroid Status in Rats. Bull Exp Biol Med 177(4): 559–563. http://doi.org/10.1007/s10517-024-06223-8
- Sarkar R, Bolel P, Kapoor A, Eliseeva E, Dulcey AE, Templin JS, Wang AQ, Xu X, Southall N, Klubo-Gwiezdzinska J, Neumann S, Marugan JJ, Gershengorn MC (2024) An Orally Efficacious Thyrotropin Receptor Ligand Inhibits Growth and Metastatic Activity of Thyroid Cancers. J Clin Endocrinol Metab 109(9): 2306–2316. http://doi.org/10.1210/clinem/dgae114
- Worden F (2014) Treatment strategies for radioactive iodine-refractory differentiated thyroid cancer. Ther Adv Med Oncol 6(6): 267–279. http://doi.org/10.1177/1758834014548188
- Zou Y, Li B, Wang X, Mao J, Zhang Y (2022) The risk between thyrotropin suppression and bone mineral density in differentiated thyroid cancer. Medicine (Baltimore) 101(48): e31991. http://doi.org/10.1097/MD.0000000000031991
- Dziedzic M, Bonczar M, Ostrowski P, Stachera B, Plutecki D, Buziak-Bereza M, HubalewskaDydejczyk A, Walocha J, Koziej M (2024) Association between serum TSH concentration and bone mineral density: an umbrella review. Hormones (Athens) 23(3): 547–565. http://doi.org/10.1007/s42000-024-00555-w
- Boutin A, Neumann S, Gershengorn MC (2016) Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells. Endocrinology 157(5): 2173–2181. http://doi.org/10.1210/en.2015-2040
- Mezei M, Latif R, Das B, Davies TF (2021) Implications of an Improved Model of the TSH Receptor Transmembrane Domain (TSHR-TMD-TRIO). Endocrinology 162(7): bqab051. http://doi.org/10.1210/endocr/bqab051
- Neumann S, Eliseeva E, Boutin A, Barnaeva E, Ferrer M, Southall N, Kim D, Hu X, Morgan SJ, Marugan JJ, Gershengorn MC (2018) Discovery of a Positive Allosteric Modulator of the Thyrotropin Receptor: Potentiation of Thyrotropin-Mediated Preosteoblast Differentiation In Vitro. J Pharmacol Exp Ther 364(1): 38–45. http://doi.org/10.1124/jpet.117.244095
- Derkach KV, Didenko EA, Sorokoumov VN, Shpakov AO (2025) Substitution of an Ethyl Group with a Methyl Group in the Variable Moiety of TPY3m, a Thyroid-Stimulating Hormone Receptor Agonist, Modifies the Effect of This Analogue on the Basal and Thyroliberin-Stimulated Levels of Thyroid Hormones in Rats. Cell Tissue Biol 19(2): 102–112. http://doi.org/10.1134/S1990519X24600716
- Derkach KV, Pechalnova AS, Nazarov IR, Didenko EA, Sorokoumov VN, Shpakov AO (2025) Development of Thieno[2,3-d]-pyrimidine-based Positive Allosteric Modulators of Thyroid Stimulating Hormone Receptor and their Effect on Thyroid Status in Rats. J Evol Biochem Physiol 61(2): 425–437. https://doi.org/10.1134/S002209302502005X
- Nagayama Y, Nishihara E (2022) Thyrotropin receptor antagonists and inverse agonists, and their potential application to thyroid diseases. Endocr J 69(11): 1285–1293. http://doi.org/10.1507/endocrj.EJ22-0391
- Barbesino G, Salvi M, Freitag SK (2022) Future Projections in Thyroid Eye Disease. J Clin Endocrinol Metab 107(Suppl_1): S47–S56. http://doi.org/10.1210/clinem/dgac252
- Turcu AF, Kumar S, Neumann S, Coenen M, Iyer S, Chiriboga P, Gershengorn MC, Bahn RS (2013) A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J Clin Endocrinol Metab 98(5): 2153–2159. http://doi.org/10.1210/jc.2013-1149
- Neumann S, Nir EA, Eliseeva E, Huang W, Marugan J, Xiao J, Dulcey AE, Gershengorn MC (2014) A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology 155(1): 310–314. http://doi.org/10.1210/en.2013-1835
- Marcinkowski P, Hoyer I, Specker E, Furkert J, Rutz C, Neuenschwander M, Sobottka S, Sun H, Nazare M, Berchner-Pfannschmidt U, von Kries JP, Eckstein A, Schülein R, Krause G (2019) A New Highly Thyrotropin Receptor-Selective Small-Molecule Antagonist with Potential for the Treatment of Graves' Orbitopathy. Thyroid 29(1): 111–123. http://doi.org/10.1089/thy.2018.0349
- Derkach KV, Bakhtyukov AA, Sorokoumov VN, Shpakov AO (2020) New Thieno-[2,3-d]pyrimidineBased Functional Antagonist for the Receptor of Thyroid Stimulating Hormone. Dokl Biochem Biophys 491(1): 77–80. http://doi.org/10.1134/S1607672920020064
- Derkach KV, Fokina EA, Bakhtyukov AA, Sorokoumov VN, Stepochkina AM, Zakharova IO, Shpakov AO (2022) The Study of Biological Activity of a New Thieno[2,3-D]-Pyrimidine-Based Neutral Antagonist of Thyrotropin Receptor. Bull Exp Biol Med 172(6): 713–717. http://doi.org/10.1007/s10517-022-05462-x
- Neumann S, Huang W, Eliseeva E, Titus S, Thomas CJ, Gershengorn MC (2010) A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. Endocrinology 151(7): 3454–3459. http://doi.org/10.1210/en.2010-0199
- Neumann S, Eliseeva E, McCoy JG, Napolitano G, Giuliani C, Monaco F, Huang W, Gershengorn MC (2011) A new small-molecule antagonist inhibits Graves' disease antibody activation of the TSH receptor. J Clin Endocrinol Metab 96(2): 548–554. http://doi.org/10.1210/jc.2010-1935
- Derkach KV, Bakhtyukov AA, Sorokoumov VN, Lebedev IA, Didenko EA, Shpakov AO (2024) Low Molecular Weight Thyrotropin Receptor Inverse Agonist is Active upon both Intraperitoneal and Oral Administration. J Evol Biochem Physiol 60(1): 295–305. https://doi.org/10.1134/S0022093024010216
- Derkach KV, Didenko EA, Sorokoumov VN, Zakharova IO, Shpakov AO (2025) Low-molecularweight Ligand of the Thyroid-stimulating Hormone Receptor with the Activity of a Partial Agonist and a Negative Allosteric Modulator. Dokl Biochem Biophys 520(1): 53–57. http://doi.org/10.1134/S1607672924600799
- Derkach KV, Shpakova EA, Didenko EA, Sorokoumov VN, Shpakov AO (2025) The Effect of Various Types of Allosteric Regulators on Basal and Hormone-Stimulated Thyrotropin Receptor Activity In Vitro and In Vivo. Rev Clin Pharm Drug Ther 23(1): 41–50 https://doi.org/10.17816/RCF635741
- Zarzycka B, Zaidi SA, Roth BL, Katritch V (2019) Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacol Rev 71(4): 571–595. http://doi.org/10.1124/pr.119.017863
- Wang Y, Yu Z, Xiao W, Lu S, Zhang J (2021) Allosteric binding sites at the receptor-lipid bilayer interface: novel targets for GPCR drug discovery. Drug Discov Today 26(3): 690–703. http://doi.org/10.1016/j.drudis.2020.12.001
- Persechino M, Hedderich JB, Kolb P, Hilger D (2022) Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. Pharmacol Ther 237: 108242. http://doi.org/10.1016/j.pharmthera.2022.108242
- Shpakov AO (2023) Allosteric sites and allosteric regulators of G protein-coupled receptors – gray cardinals of signal transduction. J Evol Biochem Physiol 59(Suppl 1): S1–S106. http://doi.org/10.1134/S0022093023070013
- Roth BL, Krumm BE (2024) Molecular glues as potential GPCR therapeutics. Biochem Pharmacol 228: 116402. http://doi.org/10.1016/j.bcp.2024.116402
- Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V (2025) Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 24(4): 251–275. http://doi.org/10.1038/s41573-024-01083-3
补充文件

