Response of Aquatic Plants Lemna minor L. to Radiation and Cadmium Stress
- Authors: Bodnar I.S.1, Cheban E.V.1
-
Affiliations:
- Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences — a separate division of the Federal State Budgetary Scientific Institution Federal Research Center “Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences”
- Issue: Vol 65, No 4-5 (2025)
- Pages: 462-476
- Section: Radiobiology of Plants
- URL: https://ogarev-online.ru/0869-8031/article/view/374123
- DOI: https://doi.org/10.7868/S3034590125040063
- ID: 374123
Cite item
Abstract
Keywords
About the authors
I. S. Bodnar
Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences — a separate division of the Federal State Budgetary Scientific Institution Federal Research Center “Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences”
Email: bodnar-irina@mail.ru
ORCID iD: 0000-0002-5211-0987
28 Kommunisticheskaya st., Syktyvkar, Komi Republic, Russia
E. V. Cheban
Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences — a separate division of the Federal State Budgetary Scientific Institution Federal Research Center “Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences”
Email: cheban.e@ib.komisk.ru
ORCID iD: 0000-0001-7865-7254
28 Kommunisticheskaya st., Syktyvkar, Komi Republic, Russia
References
- Сапожников Ю.А., Алиев Р.А., Калмыков С.Н. Радиоактивность окружающей среды: теория и практика. М.: БИНОМ Лаборатория знаний, 2006. 286 с.
- Sharma S., Singh B., Manchanda V.K. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research. 2014; 22(2):946–962. https://doi.org/10.1007/s11356-014-3635-8
- Pryakhin E.A., Tryapitsina G.A., Deryabina L.V., Atamanyuk N.I., Stukalov P.M., Ivanov I.A., Kostyuchenko V.A., Akleyev A.V. Status of ecosystems in radioactive waste reservoirs of the Mayak production association in 2009. Health Physics. 2012; 103(1):61–63. http://doi.org/10.1097/hp.0b013e31824be79a
- Kryshev A.I., Sazykina T.G. Comparative analysis of doses to aquatic biota in water bodies impacted by radioactive contamination. Journal of Environmental Radioactivity. 2012; 108:9–14. https://doi.org/10.1016/j.jenvrad.2011.07.013
- Geras’kin S. Plant adaptation to ionizing radiation: Mechanisms and patterns. The Science of the Total Environment. 2024; 916(3):170201. https://doi.org/10.1016/j.scitotenv.2024.170201
- Esnault M-A., Legue F., Chenal C. Ionizing radiation: advances in plant response. Environmental and Experimental Botany. 2010; 68:231–237. https://doi.org/10.1016/J.ENVEXPBOT.2010.01.007
- Caplin N., Willey N. Ionizing radiation, higher plants, and radioprotection: from acute high doses to chronic low doses. Frontiers in Plant Science. 2018; 9:847. https://doi.org/10.3389/fpls.2018.00847
- Koyama S., Kodama S., Suzuki K., Matsumoto T., Miyazaki T., Watanabe M. Radiation-induced longlived radicals which cause mutation and transformation. Mutation Research. 1998; 421(1):45–54. http://dx.doi.org/10.1016/s0027-5107(98)00153-5
- Lee M.H., Moon Y.R., Chung B.Y., Kim J.S., Lee K.S., Cho J.Y., Kim J.H. Practical use of chemical probes for reactive oxygen species produced in biological systems by gamma-irradiation. Radiation Physics and Chemistry. 2009; 78(5):323–327. http://dx.doi.org/10.1016/j.radphyschem.2009.03.001
- Van de Walle J., Horemans N., Saenen E., Van Hees M., Wannijn J., Nauts R., van Gompel A., Vangronsveld J., Vandenhove H., Cuypers A. Arabidopsis plants exposed to gamma radiation in two successive generations show a different oxidative stress response. J. of Environmental Radioactivity. 2016; 165:270–279. http://dx.doi.org/10.1016/j.jenvrad.2016.10.014
- Hinton T.G., Aizawa K. A layperson’s primer on multiple stressors. In: Multiple Stressors: A Challenge for the Future. NATO Science for Peace and Security Series C: Environmental Security. Netherlands, Dordrecht. Springer, 2007. Chapter 5. P. 57–69. https://doi.org/10.1007/978-1-4020-6335-0
- Vanhoudt N., Vandenhove H., Real A., Bradshaw C., Stark K. A review of multiple stressor studies that include ionising radiation. Environmental Pollution. 2012; 168:177–192. https://doi.org/10.1016/j.envpol.2012.04.023
- Smolders E., Mertens J. Cadmium. In: Alloway J.B. (Ed.). Heavy Metals in Soils — Trace Metals and Metalloids in Soils and Their Bioavailability, 3 ed. Dordrecht: Springer, 2013. P. 283–299. https://doi.org/10.1007/978-94-007-4470-7_10
- Kubier A., Wilkin R., Pichler T. Cadmium in soils and groundwater: A review. Applied Geochemistry. 2019; 1(108):1–16. https://doi.org/10.1016/j.apgeochem.2019.104388
- Vidaković-Cifrek Ž., Tkalec M., Šikić S., Tolić S., Lepeduš H., Pevalek-Kozlina B. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper. Arhiv za higijenu rada i toksikologiju. 2015; 66(2):141–152. https://doi.org/10.1515/aiht-2015-66-2618
- Clemens S., Antosiewicz D.M., Ward J.M., Schachtman D.P., Schroeder J.I. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc. Natl. Acad. Sci. USA. 1998; 95(20):12043–12048. http://doi.org/10.1073/pnas.95.20.12043
- White P.J., Broadley M.R. Calcium in plants. Annals of Botany. 2003; 92(4):487–511. http://doi.org/10.1093/aob/mcg164
- Verbruggen N., Hermans C., Schat H. Mechanisms to cope with arsenic or cadmium excess in plants. Current opinion in plant biology. 2009; 12(3):364–372. http://doi.org/10.1016/j.pbi.2009.05.001
- DalCorso G., Farinati S., Furini A. Regulatory networks of cadmium stress in plants. Plant Signaling & Behavior. 2010; 5(6):663–667. http://doi.org/10.4161/psb.5.6.11425
- Lux A., Martinka M., Vaculík M., White P.J. Root responses to cadmium in the rhizosphere: a review. J. of Experimental Botany. 2011; 62(1):21–37. http://doi.org/10.1093/jxb/erq281
- Asgher M., Khan M.I.R., Anjum N.A., Khan N.A. Minimising toxicity of cadmium in plants — role of plant growth regulators. Protoplasma. 2014; 252(2):399–413. http://doi.org/10.1007/s00709-014-0710-4
- Greger M., Kabir A.H., Landberg T., Maity P.J., Lindberg S. Silicate reduces cadmium uptake into cells of wheat. Environmental Pollution. 2016; 211(8):90–97. http://doi.org/10.1016/j.envpol.2015.12.027
- Abedi T., Mojiri A. Cadmium Uptake by Wheat (Triticum aestivum L.): An Overview. Plants. 2020; 9(4):500. http://doi.org/10.3390/plants9040500
- Das P., Samantaray S., Rout G.R. Studies on cadmium toxicity in plants: a review. Environmental Pollution. 1997; 98(1):29–36. https://doi.org/10.1016/S0269-7491(97)00110-3
- Gallego S.M., Pena L.B., Barcia R.A., Azpilicueta C.E., Iannone M.F., Rosales E.P., Zawoznik M.S., Groppa M.D., Benavides M.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany. 2012; 83:33–46. https://doi.org/10.1016/j.envexpbot.2012.04.006
- Navarro-León E., Oviedo-Silva J., Ruiz J.M., Blasco B. Possible role of HMA4a TILLING mutants of Brassica rapa in cadmium phytoremediation programs. Ecotoxicology and Environmental Safety. 2019; 180: 88–94. https://doi.org/10.1016/j.ecoenv.2019.04.081
- Cuypers A., Vanbuel I., Iven V., Kunnen K., Vandionant S., Huybrechts M., Hendrix S. Cadmiuminduced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radical Biology and Medicine. 2023; 199:81–96. https://doi.org/10.1016/j.freeradbiomed.2023.02.010
- Яблоков А.В., Нестеренко В.Б., Нестеренко А.В., Преображенская Н.Е. Чернобыль: последствия катастрофы для человека и природы. М.: КМК, Ассоциация научных изданий, 2016. 826 c.
- Salbu B., Teien H.C., Lind O.C., Tollefsen K.E. Why is the multiple stressor concept of relevance to radioecology? International J. of Radiation Biology. 2019; 95(7):1015–1024. https://doi.org/10.1080/09553002.2019.1605463
- Xie L., Song Y., PetersenK., Solhaug K.A., Lind O.C., Brede D.A., Salbu B., Tollefsen K.E. Ultraviolet B modulates gamma radiation-induced stress responses in Lemna minor at multiple levels of biological organization. Science of the Total Environmen. 2022; 10(846):e157457. http://dx.doi.org/10.1016/j.scitotenv.2022.157457
- Bradshaw C., Meseh D.A., Alasawi H., Qiang M., Snoeijs-Leijonmalm P., Nascimento F.J.A. Joint effects of gamma radiation and cadmium on subcellular-, individual and population-level endpoints of the green microalga Raphidocelis subcapitata. Aquatic Toxicology. 2019; 211(3):217–226. https://doi.org/10.1016/j. aquatox.2019.04.008
- Katiyar P., Pandey N., Keshavkant S. Gamma radiation: A potential tool for abiotic stress mitigation and management of agroecosystem. Plant Stress. 2022; 5:100089. https://doi.org/10.1016/j.stress.2022.100089.
- Гераськин С.А., Празян А.А., Васильев Д.В., Битаришвили С.В., Смирнова А.С., Шестерикова Е.М., Ханова А.С., Пишенин И.А., Казакова Е.А., Квичанская Е.С., Лыченкова М.А., Бабина Д.Д., Король М.Ю., Блинова Я.А., Подлуцкий М.С. Влияние раздельного и сочетанного действия γ-излучения и нитрата свинца на всхожесть, антиоксидантный статус и цитогенетические показатели проростков ярового ячменя. Радиационная биология. Радиоэкология. 2025; 65(1):74–88. https://doi.org/10.31857/S0869803125010072
- Bodnar I.S., Cheban E.V. Combined action of gamma radiation and exposure to copper ions on Lemna minor L. International Journal of Radiation Biology. 2022; 98(6):1120–1129. https://doi.org/10.1080/09553002.2021.1894655
- Bodnar I.S., Cheban E.V. Joint effects of gamma radiation and zinc on duckweed Lemna minor L. Aquatic Toxicology. 2023; 257:106438. https://doi.org/10.1016/j.aquatox.2023.106438
- Chou T.-C., Talalay P. Quantitative analysis of doseeffect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation. 1984; 22:27–55. https://doi.org/10.1016/0065-2571(84)90007-4
- Ekperusi A.O., Sikoki F.D., Nwachukwu E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere. 2019; 223:285–309. https://doi.org/10.1016/j.chemosphere.2019.02.025
- Bianconi D., Pietrini F., Massacci A., Iannelli M.A. Uptake of cadmium by Lemna minor, a (hyper?-) accumulator plant involved in phytoremediation applications. In: E3S Web of conferences. Rome (Italy): EDP Sciences. 2013; 1:е13002. http://dx.doi.org/10.1051/e3sconf/20130113002
- Ozyigit I.I., Arda L., Yalcin B., Yalcin I.E., Ucar B., Hocaoglu-Ozyigit A.Lemna minor,a hyperaccumulator shows elevated levels of Cd accumulation and genomic template stability in binary application of Cd and Ni: a physiological and genetic approach. International J. of Phytoremediation. 2021; 23(12):1255–1269. http://dx.doi.org/10.1080/15226514.2021.1892586
- Steinberg R.A. Mineral requirement of Lemna minor. Plant Physiology. 1946; 21:42–48. https://doi.org/10.1104/pp.21.1.42
- OECD Guidelines for the testing chemicals. Test No. 221: Lemna sp. Growth Inhibition Test. Paris: Organisation for Economic Co-operation and Development, 2006. https://doi.org/10.1787/9789264016194-en
- Боднарь И.С., Юшкова Е.А., Зайнуллин В.Г. Влияние γ-излучения на морфометрические характеристики ряски малой (Lemna minor L.). Радиационная биология. Радиоэкология. 2016; 56(6):617–622. http://dx.doi.org/10.7868/S0869803116060035
- Гигиенические нормативы содержания загрязняющих веществ в воде водных объектов, используемых для питьевого и культурно-бытового водопользования. Санитарные правила и гигиенические нормативы СанПин 1.2.3685–21. М.: Минюст России, 2021. 988 с.
- Sigel A., Sigel H., Sigel R.K.O. Cadmium: From Toxicity to Essentiality. Metal Ions in Life Sciences 11ed. London: Springer Science+Business Media Dordrecht, 2013. 589 p. https://doi.org/10.1007/978-94-007-5179-8
- Salameh E., Shteiwi M., Al Raggad M. Water Resources of Jordan. World Water Resources. In: Political, Social and Economic Implications of Scarce Water Resources. USA, TX: Texas A&M University, College Station, 2018. № 1. P. 154. https://doi.org/10.1007/978-3-319-77748-1
- Chen H.J., Wu C.F., Huang J.L. Measurement of urinary excretion of 5-hydroxymethyluracil in human by GC/NICI/MS: correlation with cigarette smoking, urinary TBARS and etheno DNA adduct. Toxicology Letters. 2005; 155(3):403–410. https://doi.org/10.1016/j.toxlet.2004.11.009
- Uruç Parlak K., Demirezen Yilmaz D. Response of antioxidant defences to Zn stress in three duckweed species. Ecotoxicology and Environmental Safety. 2012; 85:52–58. http://dx.doi.org/10.1016/j.ecoenv.2012.08.023
- Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 1968; 125(1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1
- Lichtenthaler H.K. Chlorophylls and carotenoids; pigments of photosynthetic biomembranes. Method Enzymology. 1987; 148(C):350–382. https://doi.org/10.1016/0076-6879(87)48036-1
- Chou T.C., Martin N. CompuSyn for Drug Combinations: PC Software and User’s Guide: A Computer Program for Quantitation of Synergism and Antagonism in Drug Combinations, and the Determination of IC50 and ED50 and LD50 Values. ComboSyn Inc, Paramus, (NJ). 2005.
- Nascimento F.J.A., Svendsen C., Bradshaw C. Joint toxicity of cadmium and ionizing radiation on zooplankton carbon incorporation, growth and mobility. Environmental Science & Technology. 2016; 50(3):1527–1535. http://dx.doi.org/10.1021/acs.est.5b04684
- Strzałek M., Kufel L. Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrhiza (L.) Schleiden. Peer J. 2021; 9:e12698. http://doi.org/10.7717/peerj.12698
- Lu Q., Zhang T., Zhang W., Su C., Yang Y., Hu D., Xu Q. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid. Ecotoxicology and Environmental Safety. 2018; 147:500–508. http://doi.org/10.1016/j.ecoenv.2017.09.015
- Hou W.H., Chen X., Song G.L., Wang Q.H., Chang C.C. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry. 2007; 45(1):62–69. http://doi.org/10.1016/j.plaphy.2006.12.005
- Tkalec M., Prebeg T., Roje V., Pevalek-Kozlina B., Ljubešić N. Cadmium-induced responses in duckweed Lemna minor L. Acta Physiol Plant. 2008; 30:881–90. https://doi.org/10.1007/s11738-008-0194-y
- Doganlar Z.B. Metal accumulation and physiological responses induced by copper and cadmium in Lemna gibba, L. minor and Spirodela polyrhiza. Chemical Speciation and Bioavailability. 2013; 25(2):79–88. https://doi.org/10.3184/095422913X13706128469701
- Horemans N., Van Hees M., Van Hoeck A., Saenen E., De Meutter T., Nauts R., Blust R., Vandenhove H. Uranium and cadmium provoke different oxidative stress responses in Lemna minor L. Plant Biology. 2014; 1:91–100. http://doi.org/10.1111/plb.12222
- Sanità di Toppi L., Gabbrielli R. Response to cadmium in higher plants. Environmental and Experimental Botany. 1999; 41(2):105–130. http://doi.org/10.1016/s0098-8472(98)00058-6
- Bi Y.H., Chen W.L., Zhang W.N., Zhou Q., Yun L.J., Xing D. Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmiuminduced cell death in Arabidopsis thaliana. Biology of the Cell. 2009; 101(11):629–643. http://doi.org/10.1042/BC20090015
- Hasan S.A., Fariduddin Q., Ali B., Hayat S., Ahmad A. Cadmium: toxicity and tolerance in plants. J. of Environmental Biology. 2009; 30(2):165–174. http://doi.org/10.1016/C2017-0-02050-5
- Hattab S., Dridi B., Chouba L., Ben Kheder M., Bousetta H. Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. J. of Environmental Sciences. 2009; 21(11):1552–1556. http://doi.org/10.1016/s1001-0742(08)62454-7
- Van Hoeck A., Horemans N., Nauts R., Van Hees M., Vandenhove H., Blust R. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift fromacclimation to survival strategies. Plant Science. 2017; 257:84–95. https://doi.org/10.1016/j.plantsci.2017.01.010
- Prasad M.N.V., Malec P., Waloszek A., Bojko M., Strzałka K. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science. 2001; 161(5):881–889. http://doi.org/10.1016/S0168-9452(01)00478-2
- Agathokleous E., Belz R.G., Calatayud V., De Marco A., Hoshika Y., Kitao M., Calabrese E.J. Predicting the effect of ozone on vegetation via linear nonthreshold (LNT), threshold and hormetic dose-response models. Science of the Total Environmen. 2019a; 649:61–74. http://doi.org/10.1016/j.scitotenv.2018.08.264
- Agathokleous E., Kitao M., Calabrese E.J. Hormesis: a compelling platform for sophisticated plant science. Trends in Plant Science. 2019b; 24(4):318–327. http://doi.org/10.1016/j.tplants.2019.01.004
- Hameed A., Shah T.M., Atta B.M., Haq M.A., Sayed H. Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in desi and kabuli chickpea. Pakistan Journal of Botany. 2008; 40(3):1033–1041.
- Xie L., Solhaug K.A., Song Y., Brede D.A., Lind O.C., Salbu B., Tollefsen K.E. Modes of action and adverse effects of gamma radiation in an aquatic macrophyte Lemna minor. Science of the Total Environmen. 2019; 680:23–34. http://dx.doi.org/10.1016/j.scitotenv.2019.05.016
- Sandalio L.M., Rodrнguez-Serrano M., del Rнo L.A., Romero-Puertas M.C. Reactive oxygen species and signaling in cadmium toxicity. In: Signaling and communication in plants. Berlin, Heidelberg: Springer, 2009. P. 175–189. https://doi.org/10.1007/978-3-642-00390-5_11
- Gratão P.L., Monteiro C.C., Carvalho R.F., Tezotto T., Piotto F.A., Peres L.E.P., Azevedo R.A. Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiology and Biochemistry. 2012; 56:79–96. https://doi.org/10.1016/j.plaphy.2012.04.009
- Ali B., Gill R.A., Yang S., Gill M.B., Ali S., Rafiq M.T., Zhou W. Hydrogen sulfide alleviates cadmiuminduced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicology and Environmental Safety. 2014; 110:197–207. https://doi.org/10.1016/j.ecoenv.2014.08.027
- Sudhakar C., Lakshmi A., Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science. 2001; 161(3):613–619. https://doi.org/10.1016/S0168–9452(01)00450-2
- Palit S., Sharma A., Talukder G. Effect of cobalt on plants. J. Botanical Review. 1994; 60:149–181. https://doi.org/10.1007/BF02856575
- Karuppanapandian T., Kim W. Cobalt-induced oxidative stress causes growth inhibition associated with enhanced lipid peroxidation and activates antioxidant responses in Indian mustard (Brassica juncea L.) leaves. Acta Physiologiae Plantarum. 2013; 35(8):2429–2443. http://doi.org/10.1007/s11738-013-1277-y
- Reale L., Ferranti F., Mantilacci S., Corboli M., Aversa S., Landucci F., Baldisserotto C., Ferroni L., Pancald S., Venanzoni R. Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium. Chemosphere. 2016; 145:98–105. https://doi.org/10.1016/j.chemosphere.2015.11.047
Supplementary files

