Response of Aquatic Plants Lemna minor L. to Radiation and Cadmium Stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Freshwater bodies with high radioactivity are often contaminated with chemicals, including heavy metals. Of particular interest is cadmium, which is toxic to living organisms. The article considers the effects on different levels of biological organization in duckweed Lemna minor L. when exposed to acute γ-radiation and cadmium ions (Cd2+). The plants were irradiated at doses of 11 and 63 Gy, and then cultured for 7 days on a medium with 0.315 and 12.6 µmol/L Cd2+, which corresponded to the minimum effective and half-maximum (50%) intensities of the impact of these factors on the specific growth rate of the laboratory duckweed culture. The effect of interaction of factors was calculated using median effect analysis. The growth rate under joint action was lower in most cases compared to the separate action of only radiation or Cd2+. Growth rate inhibition at 63 Gy and 12.6 µmol/L Cd2+ increased to 65%. Analysis of the effects at the population level showed that at low radiation doses the factors interacted as antagonists, and at high doses as synergists. Under the influence of stressors the average size of fronds (green plates) decreased: by 35% at 12.6 µmol/L Cd2+, by 15% under γ-radiation (63 Gy), and by 41% under combined action compared to untreated plants. Under combined action of the factors the degree of damage to the frond surface in the form of chlorosis and/or necrosis increased, including up to 100% at 63 Gy and 12.6 µmol/L Cd2+. The degree of frond damage is associated with a decrease in chlorophyll a content (r = −0.76, p < 0.05) and an increase in malondialdehyde concentration (r = 0.91, p < 0.05). At 12.6 µmol/L Cd2+ in the medium, the chlorophyll content decreased by half compared to unexposed plants. In contrast, high doses of radiation contributed to an increase in the content of chlorophylls and carotenoids (p < 0.05). After 11 and 63 Gy, Cd2+ accumulation in the tissues of irradiated plants increased by 1.8 and 3.2 times compared to unexposed plants at 0.315 µmol/L Cd2+ in the medium (p < 0.05). This study confirmed the importance of risk assessment for radioactive contamination of water bodies, taking into account the toxicity of associated stressors.

About the authors

I. S. Bodnar

Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences — a separate division of the Federal State Budgetary Scientific Institution Federal Research Center “Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences”

Email: bodnar-irina@mail.ru
ORCID iD: 0000-0002-5211-0987
28 Kommunisticheskaya st., Syktyvkar, Komi Republic, Russia

E. V. Cheban

Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences — a separate division of the Federal State Budgetary Scientific Institution Federal Research Center “Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences”

Email: cheban.e@ib.komisk.ru
ORCID iD: 0000-0001-7865-7254
28 Kommunisticheskaya st., Syktyvkar, Komi Republic, Russia

References

  1. Сапожников Ю.А., Алиев Р.А., Калмыков С.Н. Радиоактивность окружающей среды: теория и практика. М.: БИНОМ Лаборатория знаний, 2006. 286 с.
  2. Sharma S., Singh B., Manchanda V.K. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research. 2014; 22(2):946–962. https://doi.org/10.1007/s11356-014-3635-8
  3. Pryakhin E.A., Tryapitsina G.A., Deryabina L.V., Atamanyuk N.I., Stukalov P.M., Ivanov I.A., Kostyuchenko V.A., Akleyev A.V. Status of ecosystems in radioactive waste reservoirs of the Mayak production association in 2009. Health Physics. 2012; 103(1):61–63. http://doi.org/10.1097/hp.0b013e31824be79a
  4. Kryshev A.I., Sazykina T.G. Comparative analysis of doses to aquatic biota in water bodies impacted by radioactive contamination. Journal of Environmental Radioactivity. 2012; 108:9–14. https://doi.org/10.1016/j.jenvrad.2011.07.013
  5. Geras’kin S. Plant adaptation to ionizing radiation: Mechanisms and patterns. The Science of the Total Environment. 2024; 916(3):170201. https://doi.org/10.1016/j.scitotenv.2024.170201
  6. Esnault M-A., Legue F., Chenal C. Ionizing radiation: advances in plant response. Environmental and Experimental Botany. 2010; 68:231–237. https://doi.org/10.1016/J.ENVEXPBOT.2010.01.007
  7. Caplin N., Willey N. Ionizing radiation, higher plants, and radioprotection: from acute high doses to chronic low doses. Frontiers in Plant Science. 2018; 9:847. https://doi.org/10.3389/fpls.2018.00847
  8. Koyama S., Kodama S., Suzuki K., Matsumoto T., Miyazaki T., Watanabe M. Radiation-induced longlived radicals which cause mutation and transformation. Mutation Research. 1998; 421(1):45–54. http://dx.doi.org/10.1016/s0027-5107(98)00153-5
  9. Lee M.H., Moon Y.R., Chung B.Y., Kim J.S., Lee K.S., Cho J.Y., Kim J.H. Practical use of chemical probes for reactive oxygen species produced in biological systems by gamma-irradiation. Radiation Physics and Chemistry. 2009; 78(5):323–327. http://dx.doi.org/10.1016/j.radphyschem.2009.03.001
  10. Van de Walle J., Horemans N., Saenen E., Van Hees M., Wannijn J., Nauts R., van Gompel A., Vangronsveld J., Vandenhove H., Cuypers A. Arabidopsis plants exposed to gamma radiation in two successive generations show a different oxidative stress response. J. of Environmental Radioactivity. 2016; 165:270–279. http://dx.doi.org/10.1016/j.jenvrad.2016.10.014
  11. Hinton T.G., Aizawa K. A layperson’s primer on multiple stressors. In: Multiple Stressors: A Challenge for the Future. NATO Science for Peace and Security Series C: Environmental Security. Netherlands, Dordrecht. Springer, 2007. Chapter 5. P. 57–69. https://doi.org/10.1007/978-1-4020-6335-0
  12. Vanhoudt N., Vandenhove H., Real A., Bradshaw C., Stark K. A review of multiple stressor studies that include ionising radiation. Environmental Pollution. 2012; 168:177–192. https://doi.org/10.1016/j.envpol.2012.04.023
  13. Smolders E., Mertens J. Cadmium. In: Alloway J.B. (Ed.). Heavy Metals in Soils — Trace Metals and Metalloids in Soils and Their Bioavailability, 3 ed. Dordrecht: Springer, 2013. P. 283–299. https://doi.org/10.1007/978-94-007-4470-7_10
  14. Kubier A., Wilkin R., Pichler T. Cadmium in soils and groundwater: A review. Applied Geochemistry. 2019; 1(108):1–16. https://doi.org/10.1016/j.apgeochem.2019.104388
  15. Vidaković-Cifrek Ž., Tkalec M., Šikić S., Tolić S., Lepeduš H., Pevalek-Kozlina B. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper. Arhiv za higijenu rada i toksikologiju. 2015; 66(2):141–152. https://doi.org/10.1515/aiht-2015-66-2618
  16. Clemens S., Antosiewicz D.M., Ward J.M., Schachtman D.P., Schroeder J.I. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc. Natl. Acad. Sci. USA. 1998; 95(20):12043–12048. http://doi.org/10.1073/pnas.95.20.12043
  17. White P.J., Broadley M.R. Calcium in plants. Annals of Botany. 2003; 92(4):487–511. http://doi.org/10.1093/aob/mcg164
  18. Verbruggen N., Hermans C., Schat H. Mechanisms to cope with arsenic or cadmium excess in plants. Current opinion in plant biology. 2009; 12(3):364–372. http://doi.org/10.1016/j.pbi.2009.05.001
  19. DalCorso G., Farinati S., Furini A. Regulatory networks of cadmium stress in plants. Plant Signaling & Behavior. 2010; 5(6):663–667. http://doi.org/10.4161/psb.5.6.11425
  20. Lux A., Martinka M., Vaculík M., White P.J. Root responses to cadmium in the rhizosphere: a review. J. of Experimental Botany. 2011; 62(1):21–37. http://doi.org/10.1093/jxb/erq281
  21. Asgher M., Khan M.I.R., Anjum N.A., Khan N.A. Minimising toxicity of cadmium in plants — role of plant growth regulators. Protoplasma. 2014; 252(2):399–413. http://doi.org/10.1007/s00709-014-0710-4
  22. Greger M., Kabir A.H., Landberg T., Maity P.J., Lindberg S. Silicate reduces cadmium uptake into cells of wheat. Environmental Pollution. 2016; 211(8):90–97. http://doi.org/10.1016/j.envpol.2015.12.027
  23. Abedi T., Mojiri A. Cadmium Uptake by Wheat (Triticum aestivum L.): An Overview. Plants. 2020; 9(4):500. http://doi.org/10.3390/plants9040500
  24. Das P., Samantaray S., Rout G.R. Studies on cadmium toxicity in plants: a review. Environmental Pollution. 1997; 98(1):29–36. https://doi.org/10.1016/S0269-7491(97)00110-3
  25. Gallego S.M., Pena L.B., Barcia R.A., Azpilicueta C.E., Iannone M.F., Rosales E.P., Zawoznik M.S., Groppa M.D., Benavides M.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany. 2012; 83:33–46. https://doi.org/10.1016/j.envexpbot.2012.04.006
  26. Navarro-León E., Oviedo-Silva J., Ruiz J.M., Blasco B. Possible role of HMA4a TILLING mutants of Brassica rapa in cadmium phytoremediation programs. Ecotoxicology and Environmental Safety. 2019; 180: 88–94. https://doi.org/10.1016/j.ecoenv.2019.04.081
  27. Cuypers A., Vanbuel I., Iven V., Kunnen K., Vandionant S., Huybrechts M., Hendrix S. Cadmiuminduced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radical Biology and Medicine. 2023; 199:81–96. https://doi.org/10.1016/j.freeradbiomed.2023.02.010
  28. Яблоков А.В., Нестеренко В.Б., Нестеренко А.В., Преображенская Н.Е. Чернобыль: последствия катастрофы для человека и природы. М.: КМК, Ассоциация научных изданий, 2016. 826 c.
  29. Salbu B., Teien H.C., Lind O.C., Tollefsen K.E. Why is the multiple stressor concept of relevance to radioecology? International J. of Radiation Biology. 2019; 95(7):1015–1024. https://doi.org/10.1080/09553002.2019.1605463
  30. Xie L., Song Y., PetersenK., Solhaug K.A., Lind O.C., Brede D.A., Salbu B., Tollefsen K.E. Ultraviolet B modulates gamma radiation-induced stress responses in Lemna minor at multiple levels of biological organization. Science of the Total Environmen. 2022; 10(846):e157457. http://dx.doi.org/10.1016/j.scitotenv.2022.157457
  31. Bradshaw C., Meseh D.A., Alasawi H., Qiang M., Snoeijs-Leijonmalm P., Nascimento F.J.A. Joint effects of gamma radiation and cadmium on subcellular-, individual and population-level endpoints of the green microalga Raphidocelis subcapitata. Aquatic Toxicology. 2019; 211(3):217–226. https://doi.org/10.1016/j. aquatox.2019.04.008
  32. Katiyar P., Pandey N., Keshavkant S. Gamma radiation: A potential tool for abiotic stress mitigation and management of agroecosystem. Plant Stress. 2022; 5:100089. https://doi.org/10.1016/j.stress.2022.100089.
  33. Гераськин С.А., Празян А.А., Васильев Д.В., Битаришвили С.В., Смирнова А.С., Шестерикова Е.М., Ханова А.С., Пишенин И.А., Казакова Е.А., Квичанская Е.С., Лыченкова М.А., Бабина Д.Д., Король М.Ю., Блинова Я.А., Подлуцкий М.С. Влияние раздельного и сочетанного действия γ-излучения и нитрата свинца на всхожесть, антиоксидантный статус и цитогенетические показатели проростков ярового ячменя. Радиационная биология. Радиоэкология. 2025; 65(1):74–88. https://doi.org/10.31857/S0869803125010072
  34. Bodnar I.S., Cheban E.V. Combined action of gamma radiation and exposure to copper ions on Lemna minor L. International Journal of Radiation Biology. 2022; 98(6):1120–1129. https://doi.org/10.1080/09553002.2021.1894655
  35. Bodnar I.S., Cheban E.V. Joint effects of gamma radiation and zinc on duckweed Lemna minor L. Aquatic Toxicology. 2023; 257:106438. https://doi.org/10.1016/j.aquatox.2023.106438
  36. Chou T.-C., Talalay P. Quantitative analysis of doseeffect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation. 1984; 22:27–55. https://doi.org/10.1016/0065-2571(84)90007-4
  37. Ekperusi A.O., Sikoki F.D., Nwachukwu E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere. 2019; 223:285–309. https://doi.org/10.1016/j.chemosphere.2019.02.025
  38. Bianconi D., Pietrini F., Massacci A., Iannelli M.A. Uptake of cadmium by Lemna minor, a (hyper?-) accumulator plant involved in phytoremediation applications. In: E3S Web of conferences. Rome (Italy): EDP Sciences. 2013; 1:е13002. http://dx.doi.org/10.1051/e3sconf/20130113002
  39. Ozyigit I.I., Arda L., Yalcin B., Yalcin I.E., Ucar B., Hocaoglu-Ozyigit A.Lemna minor,a hyperaccumulator shows elevated levels of Cd accumulation and genomic template stability in binary application of Cd and Ni: a physiological and genetic approach. International J. of Phytoremediation. 2021; 23(12):1255–1269. http://dx.doi.org/10.1080/15226514.2021.1892586
  40. Steinberg R.A. Mineral requirement of Lemna minor. Plant Physiology. 1946; 21:42–48. https://doi.org/10.1104/pp.21.1.42
  41. OECD Guidelines for the testing chemicals. Test No. 221: Lemna sp. Growth Inhibition Test. Paris: Organisation for Economic Co-operation and Development, 2006. https://doi.org/10.1787/9789264016194-en
  42. Боднарь И.С., Юшкова Е.А., Зайнуллин В.Г. Влияние γ-излучения на морфометрические характеристики ряски малой (Lemna minor L.). Радиационная биология. Радиоэкология. 2016; 56(6):617–622. http://dx.doi.org/10.7868/S0869803116060035
  43. Гигиенические нормативы содержания загрязняющих веществ в воде водных объектов, используемых для питьевого и культурно-бытового водопользования. Санитарные правила и гигиенические нормативы СанПин 1.2.3685–21. М.: Минюст России, 2021. 988 с.
  44. Sigel A., Sigel H., Sigel R.K.O. Cadmium: From Toxicity to Essentiality. Metal Ions in Life Sciences 11ed. London: Springer Science+Business Media Dordrecht, 2013. 589 p. https://doi.org/10.1007/978-94-007-5179-8
  45. Salameh E., Shteiwi M., Al Raggad M. Water Resources of Jordan. World Water Resources. In: Political, Social and Economic Implications of Scarce Water Resources. USA, TX: Texas A&M University, College Station, 2018. № 1. P. 154. https://doi.org/10.1007/978-3-319-77748-1
  46. Chen H.J., Wu C.F., Huang J.L. Measurement of urinary excretion of 5-hydroxymethyluracil in human by GC/NICI/MS: correlation with cigarette smoking, urinary TBARS and etheno DNA adduct. Toxicology Letters. 2005; 155(3):403–410. https://doi.org/10.1016/j.toxlet.2004.11.009
  47. Uruç Parlak K., Demirezen Yilmaz D. Response of antioxidant defences to Zn stress in three duckweed species. Ecotoxicology and Environmental Safety. 2012; 85:52–58. http://dx.doi.org/10.1016/j.ecoenv.2012.08.023
  48. Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 1968; 125(1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1
  49. Lichtenthaler H.K. Chlorophylls and carotenoids; pigments of photosynthetic biomembranes. Method Enzymology. 1987; 148(C):350–382. https://doi.org/10.1016/0076-6879(87)48036-1
  50. Chou T.C., Martin N. CompuSyn for Drug Combinations: PC Software and User’s Guide: A Computer Program for Quantitation of Synergism and Antagonism in Drug Combinations, and the Determination of IC50 and ED50 and LD50 Values. ComboSyn Inc, Paramus, (NJ). 2005.
  51. Nascimento F.J.A., Svendsen C., Bradshaw C. Joint toxicity of cadmium and ionizing radiation on zooplankton carbon incorporation, growth and mobility. Environmental Science & Technology. 2016; 50(3):1527–1535. http://dx.doi.org/10.1021/acs.est.5b04684
  52. Strzałek M., Kufel L. Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrhiza (L.) Schleiden. Peer J. 2021; 9:e12698. http://doi.org/10.7717/peerj.12698
  53. Lu Q., Zhang T., Zhang W., Su C., Yang Y., Hu D., Xu Q. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid. Ecotoxicology and Environmental Safety. 2018; 147:500–508. http://doi.org/10.1016/j.ecoenv.2017.09.015
  54. Hou W.H., Chen X., Song G.L., Wang Q.H., Chang C.C. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry. 2007; 45(1):62–69. http://doi.org/10.1016/j.plaphy.2006.12.005
  55. Tkalec M., Prebeg T., Roje V., Pevalek-Kozlina B., Ljubešić N. Cadmium-induced responses in duckweed Lemna minor L. Acta Physiol Plant. 2008; 30:881–90. https://doi.org/10.1007/s11738-008-0194-y
  56. Doganlar Z.B. Metal accumulation and physiological responses induced by copper and cadmium in Lemna gibba, L. minor and Spirodela polyrhiza. Chemical Speciation and Bioavailability. 2013; 25(2):79–88. https://doi.org/10.3184/095422913X13706128469701
  57. Horemans N., Van Hees M., Van Hoeck A., Saenen E., De Meutter T., Nauts R., Blust R., Vandenhove H. Uranium and cadmium provoke different oxidative stress responses in Lemna minor L. Plant Biology. 2014; 1:91–100. http://doi.org/10.1111/plb.12222
  58. Sanità di Toppi L., Gabbrielli R. Response to cadmium in higher plants. Environmental and Experimental Botany. 1999; 41(2):105–130. http://doi.org/10.1016/s0098-8472(98)00058-6
  59. Bi Y.H., Chen W.L., Zhang W.N., Zhou Q., Yun L.J., Xing D. Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmiuminduced cell death in Arabidopsis thaliana. Biology of the Cell. 2009; 101(11):629–643. http://doi.org/10.1042/BC20090015
  60. Hasan S.A., Fariduddin Q., Ali B., Hayat S., Ahmad A. Cadmium: toxicity and tolerance in plants. J. of Environmental Biology. 2009; 30(2):165–174. http://doi.org/10.1016/C2017-0-02050-5
  61. Hattab S., Dridi B., Chouba L., Ben Kheder M., Bousetta H. Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. J. of Environmental Sciences. 2009; 21(11):1552–1556. http://doi.org/10.1016/s1001-0742(08)62454-7
  62. Van Hoeck A., Horemans N., Nauts R., Van Hees M., Vandenhove H., Blust R. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift fromacclimation to survival strategies. Plant Science. 2017; 257:84–95. https://doi.org/10.1016/j.plantsci.2017.01.010
  63. Prasad M.N.V., Malec P., Waloszek A., Bojko M., Strzałka K. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science. 2001; 161(5):881–889. http://doi.org/10.1016/S0168-9452(01)00478-2
  64. Agathokleous E., Belz R.G., Calatayud V., De Marco A., Hoshika Y., Kitao M., Calabrese E.J. Predicting the effect of ozone on vegetation via linear nonthreshold (LNT), threshold and hormetic dose-response models. Science of the Total Environmen. 2019a; 649:61–74. http://doi.org/10.1016/j.scitotenv.2018.08.264
  65. Agathokleous E., Kitao M., Calabrese E.J. Hormesis: a compelling platform for sophisticated plant science. Trends in Plant Science. 2019b; 24(4):318–327. http://doi.org/10.1016/j.tplants.2019.01.004
  66. Hameed A., Shah T.M., Atta B.M., Haq M.A., Sayed H. Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in desi and kabuli chickpea. Pakistan Journal of Botany. 2008; 40(3):1033–1041.
  67. Xie L., Solhaug K.A., Song Y., Brede D.A., Lind O.C., Salbu B., Tollefsen K.E. Modes of action and adverse effects of gamma radiation in an aquatic macrophyte Lemna minor. Science of the Total Environmen. 2019; 680:23–34. http://dx.doi.org/10.1016/j.scitotenv.2019.05.016
  68. Sandalio L.M., Rodrнguez-Serrano M., del Rнo L.A., Romero-Puertas M.C. Reactive oxygen species and signaling in cadmium toxicity. In: Signaling and communication in plants. Berlin, Heidelberg: Springer, 2009. P. 175–189. https://doi.org/10.1007/978-3-642-00390-5_11
  69. Gratão P.L., Monteiro C.C., Carvalho R.F., Tezotto T., Piotto F.A., Peres L.E.P., Azevedo R.A. Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiology and Biochemistry. 2012; 56:79–96. https://doi.org/10.1016/j.plaphy.2012.04.009
  70. Ali B., Gill R.A., Yang S., Gill M.B., Ali S., Rafiq M.T., Zhou W. Hydrogen sulfide alleviates cadmiuminduced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicology and Environmental Safety. 2014; 110:197–207. https://doi.org/10.1016/j.ecoenv.2014.08.027
  71. Sudhakar C., Lakshmi A., Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science. 2001; 161(3):613–619. https://doi.org/10.1016/S0168–9452(01)00450-2
  72. Palit S., Sharma A., Talukder G. Effect of cobalt on plants. J. Botanical Review. 1994; 60:149–181. https://doi.org/10.1007/BF02856575
  73. Karuppanapandian T., Kim W. Cobalt-induced oxidative stress causes growth inhibition associated with enhanced lipid peroxidation and activates antioxidant responses in Indian mustard (Brassica juncea L.) leaves. Acta Physiologiae Plantarum. 2013; 35(8):2429–2443. http://doi.org/10.1007/s11738-013-1277-y
  74. Reale L., Ferranti F., Mantilacci S., Corboli M., Aversa S., Landucci F., Baldisserotto C., Ferroni L., Pancald S., Venanzoni R. Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium. Chemosphere. 2016; 145:98–105. https://doi.org/10.1016/j.chemosphere.2015.11.047

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).