Rate of Cancer and Non-Cancer Pathologies in Nuclear Workers Exposed to Maximum Doses of Radiation. Systematic Review as a Basis for a Methodology for Establishing Causality of Diseases in Extreme Radiation Incidents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A methodology for establishing radiation causality of pathologies in chronic exposure to low-LET radiation in significant doses (0.4–1.0 Gy and higher) is proposed. It is relevant for accidents and extreme incidents of unintentional and intentional (nuclear and radiological terrorism). The use of risk assessments for nuclear workers (NW), for whom individual dosimetry is available, for modeling such effects seems to be the most correct approach. Based on the maintained and registered database on effects in NW, a complete sample of studies was formed that would have mortality risk assessments (Standardized Mortality Ratio; Relative Risk) from various pathologies for NW irradiated at doses from 0.4 Gy to 1.0 Gy and higher (systematic review). Mortality risks were assessed binary — “yes” (i.e. >1.0) or “not” (up to 1.0 inclusive). The percentage of risk detection was calculated for the samples for various pathologies. When a positive risk was found in >50% of studies, the causality of the pathology was considered to be attributable to radiation, similar to the Daubert Ruling in US courts. Using this method, attribution gradations of non-cancerous diseases and various types of cancer were established. It was found that these gradations, except for those identified for the most radiation-induced pathologies (leukemia and circulatory diseases), do not coincide with the table data for the Japanese cohort of victims of the atomic bombings (the LSS cohort). The proposed gradation for the consequences of chronic exposure on the population, professional and special contingents in the case of emergency, extreme or terrorist irradiation is more adequate due to a number of factors (chronic, not acute exposure, as in LSS, a more homogeneous contingent, the presence of individual dosimetry, etc.). The calculated standard “probabilities of radiation-induced diseases”, obtained on the model of NW effects, can serve as additional benchmarks for Interdepartmental Expert Councils to establish a causal relationship between developed pathologies and the radiation factor in the personnel of enterprises subordinate to the Federal Medical and Biological Agency of Russia and other departments. The absence of radiation attribution for a number of cancers and non-cancerous pathologies, even in relation to such irradiated groups of NW, will allow making a similar conclusion, but with even greater confidence, for significantly less irradiated professional groups within the Federal Medical and Biological Agency of Russia and the Rosatom system. And in the case of accidents and terrorist attacks, the developed methodology will provide reference information for subsequent assessment of the radiation-induced effects in victims.

About the authors

A. N. Koterov

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: govorilga@inbox.ru
ORCID iD: 0000-0001-8700-7624
Ph.D., Full Doctor of Biological Sciences Moscow, Russia

L. N. Ushenkova

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: ushenkova2011@mail.ru
ORCID iD: 0000-0001-8486-8007
Leading Researcher, Candidate of Biological Sciences Moscow, Russia

I. G. Dibirgadzhiev

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: idris-dig@mail.ru
ORCID iD: 0000-0002-6560-6527
Scientific Researcher Moscow, Russia

M. V. Kalinina

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: m.kalinina.10@gmail.com
Scientific Researcher Moscow, Russia

I. V. Vlasova

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: i_v_vasova@mail.ru
ORCID iD: 0000-0003-2602-3932
Head of the Organizational and Methodological Office of the Center for Occupational Pathology Moscow, Russia

A. S. Kretov

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: and2610@yandex.ru
ORCID iD: 0000-0002-6738-9685
Head of the Center for Occupational Pathology Moscow, Russia

A. Yu. Bushmanov

State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: radclin@yandex.ru
ORCID iD: 0000-0003-1565-4560
First Deputy General Director, M.D., Doctor of Medical Sciences, Professor Moscow, Russia

References

  1. UNSCEAR2008. Report to the General Assembly, with Scientific Annexes. V. II. Annex C. Radiation exposures in accidents. New York: United Nations, 2011. P. 1–43.
  2. Алексахин P.M., Булдаков Л.А., Губанов В.А., Дрожко Е.Г., Ильин Л.А., Крышев И.И. и др. Крупные радиационные аварии: последствия и защитные меры. Под общ. ред. Л.А. Ильина и В.А. Губанова. М.: ИздАТ, 2001. 752 с.
  3. Соловьев В., Ильин Л., Баранов А., Гуськова А., Барабанова А., Надежина Н. и др. Ближайшие медицинские последствия радиационных инцидентов за полувековой период деятельности атомной отрасли. Бюлл. по атомной энергии. 2003; (9): 50–52.
  4. Гуськова А.К. Основные типы аварий в атомной промышленности и энергетике: возможные медицинские последствия и меры помощи. Вопросы радиационной безопасности. 2002; (2):45–50.
  5. Medical Management of Radiation Accidents. 2nd edition. Ed. by: I.A. Gusev, A.K. Gus'kova, F.A. Mettler, Jr. London, New York, Washington D.C.: Boca Raton, CRC Press, 2001. 611 p.
  6. Котеров А.Н. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологические обоснования. Мед. радиология и радиац. безопасность. 2013; 58(2):5–21.
  7. Harrison J.D., McCready-Shea S., Hill M.A., Smith G.M., Sutton D.G. Low doses of ionising radiation: definitions and contexts. J. Radiol. Prot. 2024(Oct 7): Online ahead of print. https://doi.org/10.1088/1361-6498/ad83dd
  8. Аклеев А.В. Хронический лучевой синдром у жителей прибрежных сел реки Теча. Челябинск: Книга, 2012. 464 с.
  9. Kossenko M.M. Cancer mortality among Techa River residents and their offspring. Health Phys. 1996; 71(1):77–82. https://doi.org/10.1097/00004032-199607000-00012
  10. Degteva M.O., Shagina N.B., Shishkina E.A., Vozilova A.V., Volchkova A.Y., Vorobiova M.I., et al. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River. Radiat. Environ. Biophys. 2015; 54(4):433–444. https://doi.org/10.1007/s00411-015-0611-8
  11. Krestinina L.Y., Preston D.L., Ostroumova E.V., Degteva M.O., Ron E., Vyushkova O.V., et al. Protracted radiation exposure and cancer mortality in the Techa River Cohort. Radiat. Res. 2005; 164(5):602–611. https://doi.org/10.1667/rr3452.1
  12. Котеров А.Н., Бирюков А.П. Дети ликвидаторов аварии на Чернобыльской атомной электростанции. I. Оценка принципиальной возможности зарегистрировать радиационные эффекты. Мед. радиология и радиац. безопасность. 2012; 7(1):58–79.
  13. The Oxford Handbook of Nuclear Security. Ed. by C. Hobbs, S. Tzinieris, S.K. Aghara. New York: Oxford University Press, 2024. 741 p.
  14. Ильин Л.А. Радиологический и ядерный терроризм — медико-биологические и гигиенические проблемы. Гигиена и санитария. 2017; 96(9): 809–812. http://dx.doi.org/10.18821/0016-9900-2017-96-9-809-812
  15. Scott B.R., Peterson V.L. Risk estimates for deterministic health effects of inhaled weapons grade plutonium. Health Phys. 2003; 85(3):280–293. https://doi.org/10.1097/00004032-200309000-00005
  16. UNSCEAR2020/2021. Report to the General Assembly, with Scientific Annexes. V.I. Annex A. Evaluation of medical exposure to ionizing radiation. New York: United Nations, 2022. P. 39–344.
  17. Doss M. Conclusion of increased risk of cataracts associated with CT studies of the head may not be justified (Letter). AJR Am. J. Roentgenol. 2014; 202(4): W413. https://doi.org/10.2214/AJR.13.11867
  18. Elsendoorn T.J., Weijl N.I., Mithoe S., Zwinderman A.H., Van Dam F., De Zwart F.A., et al. Chemotherapy-induced chromosomal damage in peripheral blood lymphocytes of cancer patients supplemented with antioxidants or placebo. Mutat. Res. 2001; 498(1–2):145–158. https://doi.org/10.1016/s1383-5718(01)00278-9
  19. Boice J.D., Jr. Ionizing Radiation. In: “Schottenfeld and Fraumeni Cancer Epidemiology and Prevention”. 3th edition. Ed. by D. Schottenfeld and J.F. Fraumeni. New York: Oxford University Press, 2006. P. 259–293.
  20. UNSCEAR2017. Report to the General Assembly, with Scientific Annexes. Annex B. Epidemiological studies of cancer risk due to low-dose-rate radiation from environmental sources. New York: United Nations, 2018. P. 65–176.
  21. Крестинина Л.Ю., Силкин С.С., Епифанова С.Б. Анализ риска смерти от солидных злокачественных новообразований у населения, облучившегося на территории восточно-уральского радиоактивного следа за 50-летний период. Радиационная гигиена. 2014; 7(1):23–29.
  22. Крестинина Л.Ю., Силкин С.С., Микрюкова Л.Д., Епифанова С.Б., Аклеев А.В. Риск заболеваемости солидными злокачественными новообразованиями в Уральской когорте аварийно-облученного населения: 1956–2017. Радиационная гигиена. 2020; 13(3):6–17. https://doi.org/10.21514/1998-426X-2020-13-3-6-17
  23. Котеров А.Н., Ушенкова Л.Н., Вайнсон А.А. Работники ядерной индустрии — к вопросу об унификации русскоязычной терминологии (краткое сообщение). Мед. радиология и радиац. безопасность. 2023; 68(3):80–84. https://doi.org/10.33266/1024-6177-2023-68-3-80-84
  24. Dr. John D. Boice Jr. Curriculum vitae. Site ICRP. https://www.icrp.org/cv/%7B2A6A529B-0533-401AB64B-61055E23BF80%7D/Boice_CV.pdf (accessed: 2025/03/06).
  25. Dr. Richard Wakeford. Curriculum vitae. Site ICRP. https://www.icrp.org/cv/%7BCA8DFACB-64B6–4393-B928-FD52B0302BBA%7D/Wakeford_CV.pdf (accessed: 2025/03/06).
  26. Guzelian P.S., Victoroff M.S., Halmes N.C., James R.C., Guzelian C.P. Evidence-based toxicology: a comprehensive framework for causation. Hum. Exp. Toxicol. 2005; 24(4):161–201. https://doi.org/10.1191/0960327105ht517oa
  27. Boice J.D., Jr. The importance of radiation worker studies. J. Radiol. Prot. 2014; 34(3):E7–E12. https://doi.org/10.1088/0952-4746/34/3/E7
  28. Wakeford R. The growing importance of radiation worker studies. Br. J. Cancer. 2018; 119(5):527–529. https://doi.org/10.1038/s41416-018-0134-6
  29. Wakeford R. What about the workers? An update. J. Radiol. Prot. 2025; 45(1):Article 011504. 15 p. https://doi.org/10.1088/1361-6498/adae1a
  30. Simon S.L., Linet M.S. Radiation-exposed populations: who, why, and how to study. Health Phys. 2014; 106(2):182–195. https://doi.org/10.1097/HP.0000000000000006
  31. Boice J.D., Jr., Cohen S.S., Mumma M.T., Ellis E.D. The Million Person Study, whence it came and why. Int. J. Radiat. Biol. 2022; 98(4):537–550. https://doi.org/10.1080/09553002.2019.1589015
  32. Azizova T.V., Batistatou E., Grigorieva E.S., McNamee R., Wakeford R., Liu H., et al. An assessment of radiation-associated risks of mortality from circulatory disease in the cohorts of Mayak and Sellafield nuclear workers. Radiat. Res. 2018; 189(4):371–388. https://doi.org/10.1667/RR14468.1
  33. McGheoghegan D., Binks K. Mortality and cancer registration experience of the Sellafield employees known to have been involved in the 1957 Windscale accident. J. Radiol. Prot. 2000; 20(3):261–274. https://doi.org/10.1088/0952-4746/20/3/301
  34. Котеров А.Н., Ушенкова Л.Н. База данных (база источников) об эффектах лучевых и нелучевых воздействий для работников ядерной индустрии различных стран мира: свидетельство о государственной регистрации № 2024623705, заявл. 01.04.2024, опубл. 22.08.2024, бюллетень № 2.
  35. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. “Эффект здорового работника” по показателям общей смертности и смертности от злокачественных новообразований у персонала предприятий ядерной и химической индустрии: мета-анализы. Мед. радиология и радиац. безопасность. 2023; 68(4):43–50. https://doi.org/10.33266/1024-6177-2023-68-4-43-50
  36. Котеров А.Н., Ушенкова Л.Н., Дибиргаджиев И.Г., Буланова Т.М. Сравнение риска общей смертности для работников ядерной индустрии, шахтеров урановых рудников и других профессий с риском пассивного курения (метаанализы). Мед. радиология и радиац. безопасность. 2024; 69(5):75–86. https://doi.org/10.33266/1024-6177-2024-69-5-75-86
  37. Котеров А.Н., Ушенкова Л.Н., Вайнсон А.А., Дибиргаджиев И.Г., Калинина М.В., Бушманов А.Ю. Дозовая зависимость смертности от болезней системы кровообращения у работников ядерной индустрии (систематический обзор и pooled-анализ): отсутствие эффекта малых доз и подтверждение порога, установленного НКДАР и МКРЗ при 0.5 Гр. Мед. радиология и радиац. безопасность. 2024; 69(2):38–48. https://doi.org/10.33266/1024-6177-2024-69-2-38-48
  38. Григорьева Е.С., Азизова Т.В., Мосеева М.Б., Власенко Е.В., Мюирхед К.Р., Охэген Ж.А. и др. Риск смертности от острого инфаркта миокарда в когорте работников ПО “Маяк”. Вопросы радиационной безопасности. 2012; (1):80–88.
  39. Азизова Т.В., Григорьева Е.С., Хейлок Р., Банникова М.В., Мосеева М.Б. Риск заболеваемости и смертности от ишемической болезни сердца в когорте работников, подвергшихся профессиональному хроническому облучению. Мед. радиология и радиац. безопасность. 2016; 61(5):13–26.
  40. Калинкин Д.Е., Карпов А.Б., Тахауов Р.М., Самойлова Ю.А., Кострыкина Е.В., Ширяева И.В., я долговременному профессионалному облучению. Сибирский медицинский журнал. 2013; 28(2):108–114.
  41. Leuraud K., Richardson D.B., Cardis E., Daniels R.D., Gillies M., O'Hagan J.A., et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol. 2015; 2(7): e276–e281. https://doi.org/10.1016/S2352-3026(15)00094-0
  42. Richardson D.B., Cardis E., Daniels R.D., Gillies M., O'Hagan J.A., Hamra G.B., et al. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). Brit. Med. J. 2015; 351:Article h5359. 8 p. https://doi.org/10.1136/bmj.h5359
  43. Gillies M., Haylock R., Hunter N., Zhang W. Risk of leukemia associated with protracted low-dose radiation exposure: updated results from the national registry for radiation workers study. Radiat. Res. 2019; 192(5):527–537. https://doi.org/10.1667/RR15358.1
  44. Richardson D.B., Laurier D., Leuraud K., Gillies M., Haylock R., Kelly-Reif K., et al. Site-specific cancer mortality after low level exposure to ionizing radiation: Findings from an update of the International Nuclear Workers Study (INWORKS). Am. J. Epidemiol. 2024; Aug 6:kwae256. Online ahead of print. https://doi.org/10.1093/aje/kwae256
  45. Douglas A.J., Omar R.Z., Smith P.G. Cancer mortality and morbidity among workers at the Sellafield plant of British Nuclear Fuels. Br. J. Cancer. 1994; 70(6):1232–1243. https://doi.org/10.1038/bjc.1994.479
  46. Kendall G.M., Muirhead C.R., Mac Gibbon B.H., O'Hagan J.A., Conquest A.J., Goodill A.A., et al. Mortality and occupational exposure to radiation: first analysis of the National Registry for Radiation Workers. Brit. Med. J. 1992; 304(6821):220–225. https://doi.org/10.1136/bmj.304.6821.220
  47. Muirhead C.R., Goodill A.A., Haylock R.G., Vokes J., Little M.P., Jackson D.A., et al. Occupational radiation exposure and mortality: second analysis of the National Registry for Radiation Workers. J. Radiol. Prot. 1999; 19(1):3–26. https://doi.org/10.1088/0952-4746/19/1/002
  48. Zhang W., Haylock R.G.E., Gillies M., Hunter N. Mortality from heart diseases following occupational radiation exposure: analysis of the National Registry for Radiation Workers (NRRW) in the United Kingdom. J. Radiol. Prot. 2019; 39(2):327–353. https://doi.org/10.1088/1361-6498/ab02b2
  49. Zhang W., Haylock R.G.E., Gillies M., Hunter N., Zhang E. Effects of radiation on respiratory disease mortality: analysis of the national registry for radiation workers in United Kingdom. Int. J. Radiat. Biol. 2023; 99(10):1531–1541. https://doi.org/10.1080/09553002.2023.2187474
  50. Zielinski J.M., Ashmore P.J., Band P.R., Jiang H., Shilnikova N.S., Tait V.K., Krewski D. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers. Int. J. Occup. Med. Environ Health. 2009; 22(1):27–33. https://doi.org/10.2478/v10001-009-0001-z
  51. Little M.P., Azizova T.V., Richardson D.B., Tapio S., Bernier M.-O., Kreuzer M., et al. Ionising radiation and cardiovascular disease: systematic review and meta-analysis. Brit. Med. J. 2023; 380:Article e072924. 16 p. (with Suppl. 81 p.). https://doi.org/10.1136/bmj-2022-072924
  52. Котеров А.Н., Ушенкова Л.Н., Вайнсон А.А., Дибиргаджиев И.Г., Бирюков А.П. Избыточный относительный риск смертности от болезней системы кровообращения после облучения. Сообщение 1. Обзор обзоров и мета-анализов, декларирующих эффекты малых доз. Радиац. биология. Радиоэкология. 2023; 63(1):3–33. https://doi.org/10.31857/S0869803123010095
  53. Koterov A.N., Ushenkova L.N., Wainson A.A., Dibirgadzhiev I.G., Biryukov A.P. Excess relative risk of mortality from diseases of the circulation system after irradiation: Report 1. overview of reviews and metaanalysis declared effects of low doses. Biology Bulletin. 2023; 50(12):3155–3183. https://doi.org/10.1134/S1062359023120142
  54. Blettner M., Sauerbrei W., Schlehofer B., Scheuchenpflug T., Friedenreich C. Traditional reviews, metaanalyses and pooled analyses in epidemiology. Int. J. Epidemiol. 1999; 28(1):1–9. https://doi.org/10.1093/ije/28.1.1
  55. Gordon I., Boffetta P., Demers P.A. A case study comparing a meta-analysis and a pooled analysis of studies of sinonasal cancer among wood workers. Epidemiology. 1998; 9(5):518–524. https://doi.org/10.1097/00001648-199809000-00006
  56. Bravata D.M., Olkin I. Simple pooling versus combining in meta-analysis. Eval. Health Prof. 2001; 24(2): 218–230. https://doi.org/10.1177/01632780122034885
  57. National Research Council, Division on Earth and Life Studies, Board on Radiation Effects Research, Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII. Phase 2. National Academies Press, 2006. 422 p.
  58. UNSCEAR2000. Report to the General Assembly, with Scientific Annex. Annex I. Epidemiological evaluation of radiation-induced cancer. New York: United Nations, 2000. P. 297–450.
  59. Ozasa K., Shimizu Y., Suyama A., Kasagi F., Soda M., Grant E.J., et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat. Res. 2012; 177(3):229–243. https://doi.org/10.1667/RR2629.1
  60. Zeeb H., Merzenich H., Wicke H., Blettner M. Radiation Epidemiology. In: “Handbook of Epidemiology”. 2nd edition. Ed. by W. Ahrens, I. Pigeot. New York, Heidelberg, Dordrecht, London: Springer, 2014. P. 2003–2037.
  61. Berrington de Gonzalez A., Bouville A., Rajaraman P., Schubauer-Berigan M. Ionizing Radiation. In: “Schottenfeld and Fraumeni Cancer Epidemiology and Prevention”. 4th edition. Ed. by M.J. Thun, M.S. Linet, J.R. Cerhan, C. Haiman, D. Schottenfeld. New York: Oxford University Press. Sheridan Books, Inc., USA, 2018. P. 227–248.
  62. Egilman D., Kim J., Biklen M. Proving causation: the use and abuse of medical and scientific evidence inside the courtroom — an epidemiologist's critique of the judicial interpretation of the Daubert ruling. Food Drug Law J. 2003; 58(2):223–250.
  63. Hunter R.J., Jr., Shannon J.H., Amoroso H.J. How to manage issues relating to the use of trial experts: standards for the introduction of expert testimony through judicial “Gate-Keeping” and scientific verification. Journal of Management and Strategy. 2018; 9(1):11. https://doi.org/10.5430/jms.v9n1p1
  64. Sartore J.T., van Doren R. Daubert opinion requires judges to screen scientific evidence. Pediatrics. 2006; 118(5):2192–2194. https://doi.org/10.1542/peds.2006-0052
  65. Hollingsworth J.G., Lasker E.G. The Case against differential diagnosis: Daubert, medical causation. Testimony, and the scientific method. Journal of Health Law. 2004; 37(1):85–111.
  66. Cole P. Causality in epidemiology, health policy and law. Environmental Law Reporter. 1997; 27(6):10279–10285.
  67. Lagiou P., Trichopoulos D., Adami H.O. Concepts in Cancer Epidemiology and Etiology. In: “Textbook of Cancer Epidemiology. 2nd edition. Ed. by H.O. Adami, D. Hunter, D. Trichopoulos. New York etc.: Oxford University Press, 2008. P. 127–152. https://doi.org/10.1093/acprof:oso/9780195311174.003.0006
  68. CRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. Ed. by J. Valentin. Amsterdam, New York: Elsevier, 2007, 329 p.
  69. Котеров А.Н., Ушенкова Л.Н., Дибиргаджиев И.Г., Вайнсон А.А., Калинина М.В., Бирюков А.П. Избыточный относительный риск катарактогенных нарушений хрусталика у работников ядерной индустрии: систематический обзор и мета-анализ. Мед. радиология и радиац. безопасность. 2023; 68(3):21–32. https://doi.org/10.33266/1024-6177-2023-68-3-21-32
  70. Котеров А.Н., Ушенкова Л.Н. Катарактогенные эффекты малых доз радиации с низкой ЛПЭ: скорее нет, чем есть. Сообщение 1. Постановка проблемы и эксперименты на животных. Радиац. биология. Радиоэкология. 2023; 63(4):341–354. https://doi.org/10.31857/S0869803123040045
  71. Котеров А.Н., Ушенкова Л.Н. Катарактогенные эффекты малых доз радиации с низкой ЛПЭ: скорее нет, чем есть. Сообщение 2. Эпидемиологические исследования. Радиац. биология. Радиоэкология. 2023; 63(4):355–386. https://doi.org/0.31857/S0869803123040057
  72. Sinclair W.K. Risk as a basis for radiation protection. In: “Proc. of 6th International Congress of International Radiation Protection Association”. Organized by the Fachverband fur Strahlenschutz e. V. Bertin (West) May 7–12, 1984. Ed. by A. Kaul, R. Neider, J. Pensko, F.-E. Stieve, H. Brunner. Fachverband for Strahlenschutz e. V., 1984. Vol. I. P. 9–16.
  73. UNSCEAR2017. Report to the General Assembly, with Scientific Annexes. Annex A. Principles and criteria for ensuring the quality of the Committee's reviews of epidemiological studies of radiation exposure. New York: United Nations, 2018. P. 17–64.
  74. Бушманов А.Ю. Современное состояние проблемы диагностики и лечения профессиональных заболеваний работников атомной отрасли. Медицина экстремальных ситуаций. 2002; (2):51–59.
  75. Бушманов А.Ю., Щетинин В.В. Профессиональные заболевания работников атомной отрасли. Медицина труда и промышленная экология. 2004; (3):7–11.
  76. Weed D.L. Weight of evidence: a review of concept and methods. Risk Anal. 2005; 25(6):1545–1557. https://doi.org/10.1111/j.1539-6924.2005.00699.x
  77. Swaen G., van Amelsvoort L. A weight of evidence approach to causal inference. J. Clin. Epidemiol. 2009; 62(3):270–277. https://doi.org/10.1016/j.jclinepi.2008.06.013
  78. Becker R.A., Dellarco V., Seed J., Kronenberg J.M., Meek B., Foremn J., et al. Quantitative weight of evidence to assess confidence in potential modes of action. Regul. Toxicol. Pharmacol. 2017; 86:205–220. https://doi.org/10.1016/j.yrtph.2017.02.017
  79. Goodman S.N., Samet J.M. Cause and Cancer Epidemiology. In: “Schottenfeld and Fraumeni Cancer Epidemiology and Prevention”. 4th edition. Ed. by M.J. Thun et al. New York: Oxford University Press. Sheridan Books, Inc., USA, 2018. P. 97–104.
  80. UNSCEAR2012. Report to the General Assembly, with Scientific Annexes. Annex A. Attributing health effects to ionizing radiation exposure and inferring risks. New York: United Nations, 2015. 86 p.
  81. Tranoy K.E. Science and ethics. Some of the main principles and problems. In: “The Moral Import of Science: Essays on Normative Theory, Scientific Activity and Wittgenstein”. Ed. by A.J.I. Jones. Bergen: Sigma Forlag, 1988. P. 111–36.
  82. Гуськова А.К. Трудности в экспертизе при установлении связи заболеваний с воздействием радиации в отдаленные сроки после облучения и методы их преодоления. Мед. радиология и радиац. безопасность. 2010; 55(1):81–85.
  83. Hall J., Jeggo P.A., West C., Gomolka M., Quintens R., Badie C., et al. Ionizing radiation biomarkers in epidemiological studies — an update. Mutat. Res. Rev. Mutat. Res. 2017; 771:59–84. https://doi.org/10.1016/j.mrrev.2017.01.001
  84. Бушманов А.Ю., Рожко А.В., Бирюков А.П., Кретов А.С., Надыров Э.А., Коровкина Э.П. Анализ нормативно-правовой базы, используемой экспертными советами при установлении причинной связи заболеваний, инвалидности и смерти граждан союзного государства, подвергшихся радиационному воздействию вследствие Чернобыльской катастрофы. Медицина экстремальных ситуаций. 2016; 4(58):8–17.
  85. Бушманов А.Ю., Удалов Ю.Д., Рыжман Н.Н., Башарин В.А., Воронин С.В., Карамуллин М.А. и др. Система организации экспертизы связи заболеваний, инвалидности и смерти граждан с воздействием радиационных факторов. Мед. радиология и радиац. безопасность. 2017; 62(4):81–86. https://doi.org/10.12737/article_59b10d1ea229a0.59653865
  86. Бушманов А.Ю., Бирюков А.П., Коровкина Э.П., Кретов А.С., Власова И.В., Ломтева А.А., Гугина А.А. Результаты деятельности межведомственных экспертных советов по установлению связи заболевания, инвалидности и смерти с воздействием радиационных факторов. Мед. радиология и радиац. безопасность. 2021; 66(4):58–61. https://doi.org/10.12737/1024-6177-2021-66-4-58-61

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).