Modification of Radiation Effects Preclinical Studies of the Preventive Agent for Complications of Radiotherapy T1082. Assessment of Toxic and Radioprotective Effects during Enteral Administration

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Preclinical studies conducted a toxicological and radiobiological study of a drug for enteral prophylaxis of radiation therapy complications based on the NOS inhibitor T1082. It was established that T1082 is safe when administered intragastrically: the LD10/14 and LD50/14 values for mice and rats are similar, amounting to 2040–2090 mg/kgand 2600–2650 mg/kg (class 5 according to GOST 32419–2022 – low toxicity). Comparison of these parameters with previously obtained estimates of radioprotective doses of T1082 for mice with intragastric administration (ED50 – 88 mg/kg; range of optimal radioprotective dosesED 84–98 – 140–220 mg/kg) indicates the safety of the enteral route of T1082 administration: the therapeutic index LD50/ED50 is 30, and the values of optimal radioprotective doses are an order of magnitude lower than the maximum tolerated ones (1/15–1/10 LD10). Studies of local irritant effect have shown that only in high concentrations (10%) T1082 can cause a weak and transient reaction of the gastrointestinal mucosa, while with multiple intragastric administration in optimal radioprotective doses and moderate concentrations (1–2%) there is no irritating effect. In a skin radiation reaction model in piglets, T1082 at a dose of 23.3 mg/kgdemonstrated high efficacy, statistically significantly limiting the severity of skin lesions and reducing the incidence of key pathological changes in irradiated skin. This confirms the adequacy of the model used for interspecies dose transfer. The obtained data demonstrate the potential safety of the developed agent and the feasibility of developing a finished dosage form based on T1082 for enteral administration.

Sobre autores

M. Filimonova

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: vladimirovna.fil@gmail.com
Obninsk, Russia

V. Rybachuk

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: rybachukvitaliy@gmail.com
ORCID ID: 0000-0002-1178-3560
Obninsk, Russia

A. Kosachenko

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: filatovadaria.nik@gmail.com
ORCID ID: 0000-0003-2173-388X
Obninsk, Russia

K. Nikolaev

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Obninsk, Russia

A. Gorbachev

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: axel.gorbach@gmail.com
ORCID ID: 0009-0008-6475-9004
Obninsk, Russia

D. Filatova

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: filatovadaria.nik@gmail.com
ORCID ID: 0009-0005-3866-2792
Obninsk, Russia

O. Soldatova

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: oliasoldatt@yandex.ru
ORCID ID: 0000-0002-1178-3560
Obninsk, Russia

A. Shitova

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: annaredrose@mail.ru
ORCID ID: 0000-0001-5512-9096
Obninsk, Russia

G. Demyashkin

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: axel.gorbach@gmail.com
ORCID ID: 0000-0001-8447-2600
Obninsk, Russia

E. Litun

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: evlitun@mail.ru
Obninsk, Russia

V. Saburov

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Obninsk, Russia

S. Koryakin

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Obninsk, Russia

A. Pankratov

National Medical Research Center of Radiology, Ministry of Health of the Russian Federation

Email: andreymnoi@mail.ru
ORCID ID: 0000-0001-7291-9743
Obninsk, Russia

S. Ivanov

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: ivanov.obninsk@mail.ru
ORCID ID: 0000-0001-7689-6032
Obninsk, Russia

P. Shegai

National Medical Research Center of Radiology, Ministry of Health of the Russian Federation

Email: andreymnoi@mail.ru
Obninsk, Russia

A. Kaprin

National Medical Research Center of Radiology, Ministry of Health of the Russian Federation

Email: kaprin@mail.ru
ORCID ID: 0000-0001-8784-8415
Obninsk, Russia

A. Filimonov

A. Tsyb Medical Radiological Research Centre — the branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Obninsk, Russia

Bibliografia

  1. Lederman M. The early history of radiotherapy: 1895–1939. Int. J. Radiat. Oncol. 1981;7(5):639–648. https://doi.org/10.1016/0360-3016(81)90379-5
  2. Saenger E.L., Adamek G.D. Marie Curie and nuclear medicine: closure of a circle. Med. Phys. 1999;26(9):1761–1765. https://doi.org/10.1118/1.598720
  3. Thompson M.K., Poortmans P., Chalmers A.J., et al. Practice-changing radiation therapy trials for the treatment of cancer: where are we 150 years after the birth of Marie Curie? Br.J. Cancer 2018;119(4):389–407. https://doi.org/10.1038/s41416-018-0201-z
  4. Sonkin D., Thomas A., Teicher B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024;286–287:18–24. https://doi.org/10.1016/j.cancergen.2024.06.002
  5. Gonzalez-Viguera J., Martinez-Perez E., Perez-Montero H., et al. Hype or hope? A review of challenges in balancing tumor control and treatment toxicity in breast cancer from the perspective of the radiation oncologist. Clin. Transl. Oncol. 2024;26(3):561–573. https://doi.org/10.1007/s12094-023-03287-2
  6. De Ruysscher D., Niedermann G., Burnet N.G., et al. Radiotherapy toxicity. Nat. Rev. Dis. Primers 2019;5(1):13. https://doi.org/10.1038/s41572-019-0064-5
  7. Wang K., Tepper J.E. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J. Clin. 2021;71(5):437–454. https://doi.org/10.3322/caac.21689
  8. Wang B., Wei J., Meng L., et al. Advances in pathogenic mechanisms and management of radiation-induced fibrosis. Biomed. Pharmacother. 2020;121:109560. https://doi.org/10.1016/j.biopha.2019.109560
  9. Fliedner T.M., Dorr D.H., Meineke V. Multi-organ involvement as a pathogenetic principle of the radiation syndromes: A study involving 110 case histories documented in SEARCH and classified as the bases of haematopoietic indicators of effect. Br.J. Radiol. 2005;78(Suppl. 27):1–8. https://doi.org/10.1259/bjr/77700378
  10. Dainiak N., Gent R.N., Carr Z., et al. Literature review and global consensus on management of acute radiation syndrome affecting nonhematopoietic organ systems. Disaster Med. Public Health Prep. 2011;5(3):183–201. https://doi.org/10.1001/dmp.2011.73
  11. Moding E.J., Kastan M.B., Kirsch D.G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov. 2013;12(7):526–542. https://doi.org/10.1038/nrd4003
  12. Montay-Gruel P., Meziani L., Yakkada C., Vozenin M. Expanding the therapeutic index of radiation therapy by normal tissue protection. Br.J. Radiol. 2019;92(1093):20180008. https://doi.org/10.1259/bjr.20180008
  13. Patt H.M., Tyree E.B., Straube R.L., Smith D.E. Cysteine protection against X irradiation. Science 1949;110(2852):213–214. https://doi.org/10.1126/science.110.2852.213
  14. Singh V.K., Seed T.M. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int. J. Radiat. Biol. 2017;93(9):851–869. https://doi.org/10.1080/09553002.2017.1332438
  15. Liu L., Liang Z., Ma S., et al. Radioprotective countermeasures for radiation injury (review). Mol. Med. Rep. 2023;27(3):1–24. https://doi.org/10.3892/mmr.2023.12953
  16. Grebenyuk A.N., Gladkikh V.D. Modern condition and prospects for the development of medicines towards prevention end early treatment of radiation damage. Biol. Bull. 2019;46(11):1540–1555. https://doi.org/10.1134/S1062359019110141
  17. Kiang J.G., Cannon G., Singh V.K. An overview of radiation countermeasure development in Radiation Research from 1954 to 2024. Radiat. Res. 2024;202(2):420–431. https://doi.org/10.1667/RADE-24-00036.1
  18. National stockpiles for radiological and nuclear emergencies: policy advice. Geneva: World Health Organization; 2023, 66 p. ISBN 978-92-4-006788-2
  19. King M., Joseph S., Albert A., et al. Use of amifostine for cytoprotection during radiation therapy: a review. Oncology 2020;98(2):61–80. https://doi.org/10.1159/000502979
  20. Colella G., Boschetti C.E., Vitagliano R., et al. Interventions for the prevention of oral mucositis in patients receiving cancer treatment: Evidence from randomised controlled trials. Curr. Oncol. 2023;30(1):967–980. https://doi.org/10.3390/curroncol30010074
  21. Vasin M.V., Ushakov I.B. Comparative efficacy and the window of radioprotection for adrenergic and serotoninergic agents and aminothiols in experiments with small and large animals. J. Radiat. Res. 2014;56(1):1–10. https://doi.org/10.1093/jrr/rru087
  22. MacVitte T.J. Where are the medical countermeasures against the ARS and DEARE? A current topic relative to an animal model research platform, radiation exposure context, the acute and delayed effects of acute exposure, and the FDA animal rule. Int. J. Radiat. Biol. 2023;99(7):994–1008. https://doi.org/10.1080/09553002.2023.2181999
  23. Филимонова М.В., Проскуряков С.Я., Шевченко Л.И. и др. Радиозащитные свойства производных изотиомочевины с NO-ингибирующим механизмом действия. Радиационная биология. Радиоэкология. 2012;52(6):593–601. [Filimonova M.V., Proskuriakov S.Y., Shevchenko L.I., et al. Radioprotective properties of isothiourea derivatives with NO-inhibitory mechanism of action. Radiatsionnaia biologiia, radioecologiia = Radiation Biology. Radioecology 2012;52(6):593–601. (in Russ.)]. PMID: 23516890
  24. Filimonova M.V., Makarchuk V.M., Shevchenko L.I., et al. Radioprotective activity of nitric oxide synthase inhibitor T1023. Toxicological and biochemical properties, cardiovascular and radioprotective effects. Radiat. Res. 2020;194(5):532–543. https://doi.org/10.1667/RADE-20–00046.1
  25. Филимонова М.В., Шевченко Л.И., Макарчук В.М. и др. Противолучевые эффекты Т1082 — фосфата 1-изобутаноил-2-изопропилизотиомочевины, в сравнении с его аналогом Т1023. Радиационная биология. Радиоэкология. 2021;61(6):632–644. [Filimonova M.V., Shevchenko L.I., Makarchuk V.M., et al. Radioprotective effects of T1082 — phosphate 1-isobutanoyl-2-isopropylisothiourea in comparison with its analogue T1023. Radiatsionnaia biologiia, radioecologiia = Radiation Biology. Radioecology 2021;61(6):632–644. (In Russ.)]. https://doi.org/10.31857/S0869803121060059
  26. Filimonova M., Saburova A., Shevchenko L., et al. 1-Isobutanoyl-2-isopropylisothiourea phosphate, T1082 — A save and effective prevention of radiotherapy complications in oncology. Int. J. Mol. Sci. 2022;23(5):2697. https://doi.org/10.3390/ijms23052697
  27. Сабурова А.С., Филимонова М.В., Южаков В.В. и др. Влияние ингибитора синтаз оксида азота Т1023 на развитие лучевого пневмофиброза у крыс. Радиационная гигиена 2020;13(1):60–67. [Saburova A.S., Filimonova M.V., Yuzhakov V.V., et al. The influence of nitric oxide synthases inhibitor T1023 on the development of radiation pneumofibrosis in rats. Radiatsionnaya Gygiena = Radiation Hygiene 2020;13(1):60–67. (In Russ.)]. https://doi.org/10.21514/1998-426X-2020-13-1-60-67
  28. Filimonova M., Saburova A., Makarchuk V., et al. The ability of the nitric oxide synthase inhibitor T1023 to selectively protect the non-malignant tissues. Int. J. Mol. Sci. 2021;22(17):9340. https://doi.org/10.3390/ijms22179340
  29. Филимонова М.В., Шевченко Л.И., Филимонов А.С. и др. Патент № 2733883 Российская Федерация, МПК А61К, А61Р, С07С. Радиозащитное фармакологическое средство. № 2020113581, заявл. 15.04.2020, опубл. 07.10.2020 Бюл. № 28. 12 с. [Filimonova M.V., Shevchenko L.I., Filimonov A.S., i dr. Patent № 2733883 Rossijskaya Federaciya, MPK A61K, A61R, S07S. Radiozashchitnoe farmakologicheskoe sredstvo = Radioprotective pharmacological agent. № 2020113581, Appl. 15.04.2020, Publ. 07.10.2020 Bull. 28. 12 p.].
  30. Diehl K.-H., Hull R., Morton D. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 2001;21(1):15–23. https://doi.org/10.1002/jat.727
  31. Руководство по проведению доклинических исследований лекарственных средств. Часть первая. Под ред. А.Н. Миронова. М.: Гриф и К, 2012. 944 с. [Rukovodstvo po provedeniyu doklinicheskih issledovanij lekarstvennyh sredstv. CHast' pervaya. = Guidelines for preclinical drug research. Part 1. Mironov A.N. Ed., Moscow: Grif & Co., 2012. p. 944].
  32. Cox J.D., Stetz J., Pajak T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization of Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995;31(5):1341–1346. https://doi.org/10.1016/0360-3016(95)00060-C
  33. Greaves P. Histopathology of preclinical toxicity studies: interpretation and relevance in drug safety evaluation. 4th ed. Amsterdam: Elsevier AP, 2012. 1248 p. ISBN: 9780444538567
  34. Background Lesions in Laboratory Animals. A Color Atlas. Eds. E.F. Mcinnes, P. Mann. Saunders Ltd., 2012. 247 p. ISBN: 978-0-7020-3519-7 https://doi.org/10.1016/C2009-0-41283-2
  35. The Laboratory Rabbit, Guinea Pig, Hamster and Other Rodents. Eds. M.A. Suckow, K.A. Stevens, R.P. Wilson. Academic Press, Elsevier, London, 2012. 1268 p. ISBN: 9780123809209
  36. Wells M., MacBride S. Radiation skin reactions. In Supportive care in radiotherapy. Churchill Livingstone: Edinburgh, UK, 2003. pp. 135–159. ISBN: 0443064865
  37. Harmonized integrated hazard classification system for human health and environmental effects of chemical substances. Paris. OECD, 1998. http://www.oecd.org/ehs/Class/HCL6.htm

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).