STUDY OF SOIL COMPOSITION INDICATORS BASED ON HYPERSPECTRAL SURVEY DATA
- Autores: Savchenko D.A1,2, Kuzmin E.A1,2, Timirgaleeva R.R3, Korotayev A.V4,5,6
-
Afiliações:
- Lomonosov Moscow State University, Geological Faculty
- Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences
- Lomonosov Moscow State University, Institute of Complex Systems Mathematical Research
- Lomonosov Moscow State University, Faculty of Global Studies
- HSE University
- Institute for African Studies, Russian Academy of Sciences
- Edição: Nº 3 (2025)
- Páginas: 86–100
- Seção: RESEARCH METHODS AND TECHNIQUES
- URL: https://ogarev-online.ru/0869-7809/article/view/307784
- DOI: https://doi.org/10.31857/S0869780925030074
- EDN: https://elibrary.ru/SMCRLX
- ID: 307784
Citar
Resumo
Palavras-chave
Sobre autores
D. Savchenko
Lomonosov Moscow State University, Geological Faculty; Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences
Email: danilsavch@yandex.ru
Moscow, Russia; Moscow, Russia
E. Kuzmin
Lomonosov Moscow State University, Geological Faculty; Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences
Email: eugene@geoenv.ru
Moscow, Russia; Moscow, Russia
R. Timirgaleeva
Lomonosov Moscow State University, Institute of Complex Systems Mathematical Research
Email: timirgaleevarr@my.msu.ru
Moscow, Russia
A. Korotayev
Lomonosov Moscow State University, Faculty of Global Studies; HSE University; Institute for African Studies, Russian Academy of Sciences
Email: akorotаyev@gmail.com
Moscow, Russia; Moscow, Russia; Moscow, Russia
Bibliografia
- Баборыкин М.Ю., Жидиляева Е.В., Погосян А.Г. Дешифрирование материалов аэрокосмической съемки для анализа инженерно-геологических условий в общем алгоритме изысканий на линейных объектах // Инженерные изыскания. 2014. № 9—10. С. 13—21.
- Грубина П.Г., Савин И.Ю. Информативность данных инфракрасного диапазона съемки для детектирования свойств пахотных почв // Вестник РУДН. Серия: Агрономия и животноводство. 2023. № 2(18). С. 197—212.
- Корниенко С.Г. Информативность космических снимков сверхвысокого разрешения в задачах мониторинга влажности тундрового покрова // Актуальные проблемы нефти и газа. 2020. № 2(29). С. 82—95.
- Кринов Е.Л. Спектральная отражательная способность природных образований. М: АН СССР, 1947. 273 с.
- Кронберг П. Дистанционное изучение Земли. Основы и методы дистанционных исследований в геологии: Пер. с нем. М: Мир, 1988. 352 с.
- Никифорова Н.Н., Калиничева С.В., Плотников Н.А. и др. Анализ влажности грунтов с использованием дистанционных и наземных исследований // География и краеведение в Якутии и сопредельных территориях Сибири и Дальнего Востока / Ред. колл. Пахомова Л.С. и др. Якутск: СВФУ, 2022. С. 103—106.
- Пронина Л.А., Гмыря А.А., Хорошавина А.В. Использование лазерного сканирования при инженерно-геодезических изысканиях для целей проектирования реконструкции автомобильных дорог // Электронный научно-методический журнал Омского ГАУ. 2019. № 4. С. 10—14. http://e-journal.omgau.ru/images/issues/2019/4/00772.pdf
- Прудникова Е.Ю., Савин И.Ю., Виндекер Г.В. Спектральная отражательная способность открытой поверхности пахотных почв как основа дешифрирования их свойств по данным дистанционного зондирования // Матер. II Всерос. научной конф. с междунар. участием “Применение средств дистанционного зондирования Земли в сельском хозяйстве”. СПб.: ФГБНУ АФИ, 2018. С. 113—119.
- Райкунов Г.Г., Щербаков В.Л., Турченко С.И., Брусничкина Н.А. Гиперспектральное дистанционное зондирование в геологическом картировании. М.: ФИЗМАТЛИТ, 2014. 136 с.
- Савин И.Ю. Перспективы развития картографирования и мониторинга почв на основе интерполяции точечных данных и дистанционных методов // Вестн. Моск. унта. Сер. 17. Почвоведение. 2022. № 2. С. 13—19.
- Савин И.Ю., Виндекер Г.В. Некоторые особенности использования оптических свойств поверхности почв для определения их влажности // Почвоведение. 2021. № 7. C. 806–814.
- Савин И.Ю., Шишкин М.А., Шарычев Д.В. Особенности спектральной отражательной способности фракций образцов почв размером от 20 до 5000 мкм // Бюллетень Почвенного института им. В.В. Докучаева. 2022. № 112. C. 24—47.
- Тронин А.А., Горный В.И., Крицук С.Г., Латыпов И.Ш. Спектральные методы дистанционного зондирования в геологии. Обзор // Современные проблемы дистанционного зондирования Земли из космоса. 2011. Т. 8. № 4. C. 23—26.
- Прудникова Е.Ю., Савин И.Ю. Исследование оптических свойств открытой поверхности почв // Оптический журнал. 2016. Т. 83 № 10. С. 79—86.
- Abrams M., Yamaguchi Y., Crippen R. ASTER Global DEM (GDEM). Ver. 3 // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2022. V. B4-2022 (XLIII-B4-2022). P. 593—598.
- Alonso K., Bachmann M., Burch K., Carmona E. et al. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS) // Sensors. 2019. V. 19(20): 4471. P. 1—44. https://doi.org/10.3390/s19204471
- Alonso K., Bachmann M., Burch K., Carmona, E. et al. Statistical classification for assessing PRISMA hyperspectral potential for agricultural land use // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2013. V. 6(2). P. 615—625. https://doi.org/10.1109/JSTARS.2013.2255981
- Baumgardner M.F., Silva L.F., Biehl L.L., Stoner E.R. Reflectance properties of soils // Advances in agronomy. 1986. V. 38. P. 1—44.
- Bayer A.D., Bachmann M., Rogge D., et al. Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in a Semiarid Environment // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016. V. 9(9). P. 3997—4010. https://doi.org/10.1109/JSTARS.2016.2585674
- Ben-Dor, E., Chabrillat, S., Demattê, J.A.M. et al. Using Imaging Spectroscopy to study soil properties // Remote Sensing of Environment. 2009. V. 113. P. 38—55. https://doi.org/10.1016/j.rse.2008.09.019
- Ben-Dor E., Irons J. R., Epema G.F. Soil reflectance // Remote sensing for the earth sciences: Manual of remote sensing. 1999. V. 3(3). P. 111—188.
- Bhargava A., Sachdeva A., Sharma K. et al. Hyperspectral Imaging and Its Applications: A Review // Heliyon. 2024. V. 10(12). P. 1—15.
- Bowers S.A., Hanks R.J. Reflection of radiant energy from soils // Soil Science. 1965. V. 100(2). P. 130—138.
- Castaldi F., Palombo A., Pascucci S. et al. Reducing the influence of soil moisture on the estimation of clay from hyperspectral data: A case study using simulated PRISMA data // Remote Sensing. 2015. V. 7(11). P. 15561—15582. https://doi.org/10.3390/rs71115561
- Castaldi F., Palombo A., Santini F. et al. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon // Remote Sensing of Environment. 2016. V. 179. P. 54—65. https://doi.org/10.1016/j.rse.2016.03.025
- Cierniewski J., Kuśnierek K. Influence of several size properties on soil surface reflectance // Quaestiones Geographicae. 2010. V. 29(1). P. 13—25. https://doi.org/10.2478/v10117-010-0002-9
- Cocks T., Jenssen, R., Stewart A. et al. The HyMapTM airborne hyperspectral sensor: The system, calibration and performance // Proc. of the 1st EARSeL workshop on Imaging Spectroscopy, EARSeL. 1998. P. 37—42.
- Demattê J.A., Dotto A.C., Paiva A.F., Sato M.V. et al. The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges // Geoderma. 2019. V. 354. P. 1—21. https://doi.org/10.1016/j.geoderma.2019.05.043
- Eismann M.T. Hyperspectral Remote Sensing. Washington: SPIE, 2012. 748 p.
- Fabre S., Briottet X., Lesaignoux A. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 µm Domain // Sensors. 2015. V. 15(2). P. 3262—3281.
- Ge W., Cheng Q., Jing L., Chen Y. et al. Mineral mapping in the western Kunlun Mountains using Tiangong-1 hyperspectral imagery // IOP Conference Series: Earth and Environmental Science. V. 34(1). 2016. P. 1—6.
- Gersman R., Ben-Dor E., Beyth M. et al. Mapping of hydrothermally altered rocks by the EO-1 Hyperion sensor, Northern Danakil Depression, Eritrea // International Journal of Remote Sensing. 2008. V. 29(13). P. 3911—3936. https://doi.org/10.1080/01431160701874587
- Gomez C., Lagacherie P. Mapping of Primary Soil Properties Using Optical Visible and Near Infrared (Vis-NIR) Remote Sensing // Land surface remote sensing in agriculture and forest, 2016. P. 1—35. https://doi.org/10.1016/B978-1-78548-103-1.50001-7
- Gomez C., Lagacherie P., Coulouma G. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data // Geoderma. 2012. V. 189. P. 176—185.
- Gomez C., Viscarra Rossel R.A., McBratney A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study // Geoderma. 2008. V. 146(3—4). P. 403—411.
- Goswami C., Singh N.J., Handique B.K. Hyperspectral Spectroscopic Study of Soil Properties. A Review // International Journal of Plant & Soil Science. 2020. V. 32(7). P. 14—25. https://doi.org/10.9734/ijpss/2020/v32i730301
- Guanter L., Kaufmann H., Segl K., Foerster S. et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation // Remote Sensing. 2015. V. 7(7). P. 8830—8857. https://doi.org/10.3390/rs70708830
- Haubrock S.N., Chabrillat S., Lemmnitz C., Kaufmann, H. Surface soil moisture quantification models from reflectance data under field conditions // International Journal of Remote Sensing. 2008. V. 29(1). P. 3—29. https://doi.org/10.1080/01431160701294695
- Huang J., Yuang Y. Vertical Accuracy Assessment of the ASTER, SRTM, GLO-30, and ATLAS in a Forested Environment // Forests. 2024. V. 15(3): 426. P. 1—19. https://doi.org/10.3390/f15030426
- Hubbard B.E., Crowley J.K. Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions // Remote Sensing of Environment. 2005. V. 99(1—2). P. 173—186. https://doi.org/10.1016/j.rse.2005.04.027
- Janik L.J., Merry R. H., Skjemstad J.O. Can mid infrared diffuse reflectance analysis replace soil extractions? // Australian Journal of Experimental Agriculture. 1998. V. 7(38). P. 681—696. https://doi.org/10.1071/EA97144
- Kokaly R.F., Clark R.N., Swayze G.A., Livo K.E. et al. USGS Spectral Library Version 7 (No. 1035). Reston: US Geological Survey. 2017. 68 p. https://doi.org/10.3133/ds1035
- Ladoni M., Bahrami H.A., Alavipanah S.K., Norouzi A.A. Estimating soil organic carbon from soil reflectance: A review // Precision Agriculture. 2010. V. 1(11). P. 82—99.
- Lehnert K., Su Y., Langmuir C. H., Sarbas B., Nohl U. A global geochemical database structure for rocks // Geochemistry, Geophysics, Geosystems. 2000. V. 1(1). P. 1—14. https://doi.org/10.1029/1999GC000026
- Leverington D.W. Discrimination of sedimentary lithologies using Hyperion and Landsat Thematic Mapper data: A case study at Melville Island, Canadian High Arctic // International Journal of Remote Sensing. 2010. V. 31(1). P. 233—260.
- Liu L., Ji M., Buchroithner M. Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery // Sensors. 2018. V. 18(9): 3169. P. 1—18. https://doi.org/10.3390/s18093169
- Lobell D.B., Asner G.P. Moisture Effects on Soil Reflectance // Soil Science Society of America Journal .2002. V. 66(3). P. 722—727. https://doi.org/10.2136/sssaj2002.7220
- Lopinto E., Ananasso C. The Prisma hyperspectral mission / Lasaponara R. (ed.) // Proc. of the 33rd EARSeL Symposium: Towards Horizon. 2020. V. 12. P. 135—146.
- Marghany M. Remote Sensing and Image Processing in Mineralogy. Oxon: CRC Press, 2022. 300 p.
- Van der Meer F.D., Van der Werff H.M., Van Ruitenbeek F.J. et al. Multiand hyperspectral geologic remote sensing: A review // Int. Journal of Applied Earth Observation and Geoinformation. 2012. V. 14(1). P. 112—128. https://doi.org/10.1016/j.jag.2011.08.002
- Mielke C., Boesche N. K., Rogass C. et al. Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom missions: Hyperion/OLI and EnMAP/Sentinel-2 // Remote Sensing. 2014. № 6(8). P. 6790—6816. https://doi.org/10.3390/rs6086790
- Mielke C., Rogass C., Boesche N., Segl K., Altenberger U. EnGeoMAP 2.0-automated hyperspectral mineral identification for the German EnMAP space mission // Remote Sensing. 2016. № 8(2): 127. P. 1—26.
- Milewski R., Chabrillat S., Brell M., Schleicher A.M., Guanter L. Assessment of the 1.75 µm absorption feature for gypsum estimation using laboratory, airand spaceborne hyperspectral sensors // Int. Journal of Applied Earth Observation and Geoinformation. 2019. V. 77. P. 69—83. https://doi.org/10.1016/j.jag.2018.12.012
- Moreira L.C.J., Teixeira A. dos S., Galvão L.S. Laboratory Salinization of Brazilian Alluvial Soils and the Spectral Effects of Gypsum // Remote Sensing. 2014. V. 6(4). P. 2647—2663.
- Okin G.S., Painter T.H. Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces // Remote Sensing of Environment. 2004. V. 89(3). P. 272— 280. https://doi.org/10.1016/j.rse.2003.10.008
- Perkins R., Galloway P., Miller R., Graham L. Teledyne’s MUSES mission on the ISS: Enabling flexible and reconfigurable earth observation from space / Tjuatja S., Kunkee D. (ed.) // International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth: IEEE. 2017. P. 1177—1180. https://doi.org/10.1109/IGARSS.2017.8127167
- Qian S.E. Hyperspectral Satellites, Evolution, and Development History // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021. V. 14. P. 7032—7056. https://doi.org/10.1109/JSTARS.2021.3090256
- Schad P. World Reference Base for Soil Resources — Its fourth edition and its history // Journal of Plant Nutrition and Soil Science. 2023. V. 186(2). P. 151—163. https://doi.org/10.1002/jpln.202200417
- Shepherd K.D., Walsh M.G. Development of Reflectance Spectral Libraries for Characterization of Soil Properties // Soil Science Society of America Journal. 2002. V. 66(3). P. 988—998. https://doi.org/10.2136/sssaj2002.9880
- Signoroni A., Savardi M., Baronio A., Benini S. Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review // Journal of Imaging. 2019. V. 5(5): 52. P. 1—32. https://doi.org/10.3390/jimaging5050052
- Singh A., Gaurav K., Sonkar G.K., Lee C.C. Strategies to Measure Soil Moisture Using Traditional Methods, Automated Sensors, Remote Sensing, and Machine Learning Techniques: Review, Bibliometric Analysis, Applications, Research Findings, and Future Directions // IEEE Access. 2023. V. 11. P. 13605—13635. https://doi.org/10.1109/ACCESS.2023.3243635
- Sowmya V., Soman K.P., Hassaballah M. Hyperspectral image: Fundamentals and advances. In: Hassaballah, M., Hosny, K. Recent Advances in Computer Vision. Studies in Computational Intelligence V. 804. Cham: Springer, 2019. P. 401—424. https://doi.org/10.1007/978-3-030-03000-1_16
- Steinberg A., Chabrillat S., Stevens A., Segl K., Foerster S. Prediction of common surface soil properties based on VisNIR airborne and simulated EnMAP imaging spectroscopy data: Prediction accuracy and influence of spatial resolution // Remote Sensing. 2016. V. 8(7): 613. P. 1—20. https://doi.org/10.3390/rs8070613
- Storch T., Honold H.P., Chabrillat S. et al. The EnMAP imaging spectroscopy mission towards operations // Remote Sensing of Environment. 2023. V. 294: 113632. P. 1—20. https://doi.org/10.1016/j.rse.2023.113632
- Ungar S.G., Pearlman J.S., Mendenhall J.A., Reuter D. Overview of the Earth Observing One (EO-1) mission // IEEE Transactions on Geoscience and Remote Sensing. 2003. V. 41(6). P. 1149—1159. https://doi.org/10.1109/TGRS.2003.815999
- Vasques G.M., Demattê J.A., Rossel R.V. et al. Soil classification using visible/near-infrared diffuse reflectance spectra from multiple depths // Geoderma. 2014. V. 223. P. 73—78.
- Rossel R.V., Walvoort D.J., McBratney A.B., Janik L.J., Skjemstad J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties // Geoderma. 2006. V. 131(1—2). P. 59—75. https://doi.org/10.1016/j.geoderma.2014.01.019
- Rossel R.V., Behrens T., Ben-Dor E., Brown D.J. et al. A global spectral library to characterize the world’s soil // Earth-Science Reviews. 2016. V. 155. P. 198—230. https://doi.org/10.1016/j.earscirev.2016.01.012
- Wang J., He T., Lv C., Chen Y., Jian W. Mapping soil organic matter based on land degradation spectral response units using Hyperion images // International Journal of Applied Earth Observation and Geoinformation. 2010. V. 12. P. 171—180. https://doi.org/10.1016/j.jag.2010.01.002
- Xu H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery // Int. Journal of Remote Sensing. 2006. V. 27(14). P. 3025—3033. https://doi.org/10.1080/01431160600589179
- Yokoya N., Chan J. C. W., Segl K. Potential of resolutionenhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images // Remote Sensing. 2016. V. 8(3): 172. P. 1—18. https://doi.org/10.3390/rs8030172
Arquivos suplementares
