Pyrolysis and chromatomass spectrometry of high-molecular-weight and low-molecular-weight polytetrafluoroethylenes

Cover Page

Cite item

Full Text

Abstract

The article provides information on the methods for studying the mechanisms of depolymerization and thermal destruction of polytetrafluoroethylene (PTFE) and its low-molecular-weight fractions. It is shown that pyrolysis gas chromatograph mass spectrometry (Pi-GC/MS) is the most widely used method for analyzing the consist and properties of high-molecular-weight and low-molecular-weight polytetrafluoroethylenes, but this method does not allow good separation of the peaks of saturated and unsaturated fluorocarbons and identification is possible only by characteristic ions. It is possible to use the Pi-GC/MS option, where the mass spectrometer operates in the negative chemical ionization mode with methane and isobutane reagent gases. The separation does not become better, but good mass spectra are recorded, where molecular ions are present. Only multidimensional gas chromatography allows complete separation of the peaks of saturated and unsaturated fluorocarbons.

About the authors

V. S. Shatilov

Institute of Chemistry, FEB RAS

Email: shatilov.val@mail.ru
Vladivostok, Russia

P. A. Zadorozhny

Institute of Chemistry, FEB RAS

Email: zadorozhny@mail.ru
Vladivostok, Russia

S. V. Sukhoverkhov

Institute of Chemistry, FEB RAS

Email: svs28@ich.dvo.ru
Vladivostok, Russia

References

  1. Drobny J.G., Ebnesajjad S. Technology of fluoropolymers: a concise handbook. CRC Press; 2023. 327 p.
  2. Loginov B.A. Udivitel’nyi mir ftorpolimerov. 2-e izd, dopolnennoe. Moscow; 2009. 168 s. (In Russ.).
  3. Buznik V.M. Ftorpolimernye materialy: primenenie v neftegazovom komplekse. Moscow: Neft’ i Gaz: RGU Nefti i Gaza im. I.M. Gubkina; 2009. 31 s. (In Russ.).
  4. Buznik V.M. Novye nanorazmernye i mikrorazmernye ob’ekty na osnove politetraftorehtilena.Ros. Nanotechnologii.2009;4(11/12):35–41. (In Russ.).
  5. Buznik V.M. Ftorpolimernye materialy. Tomsk; 2017. 600 s. (In Russ.).
  6. Ignat’eva L.N., Mashchenko V.A., Gorbenko O.M., Buznik V.M. Nizkomolekulyarnye ftorpolimery. Stroenie, termicheskie svoistva.Khim. Fizika.2023;42(11):23–38. (In Russ.).
  7. Puts G.J., Crouse P., Ameduri B.M. Polytetrafluoroethylene: synthesis and characterization of the original extreme polymer.Chem. Rev. 2019;119(3);1763–1805.
  8. Tuminello W.H., Dee G.T. Thermodynamics of poly(tetrafuoroethylene) solubility.Macromolecules. 1994;27(3):669–676.
  9. Ol’khov Yu.A., Allayarov S.R., Dikson D.A. Molekulyarno-topologicheskoe stroenie γ-obluchennogo politetraftorehtilena.Khimiya Vysokikh Ehnergii. 2012;46(6):476–476. (In Russ.).
  10. Khatipov S.A. et al. Issledovanie nadmolekulyarnoi struktury PTFE s ispol’zovaniem dvukhstadiinogo khimicheskogo travleniya poverkhnosti.J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2015;(11):72–83. (In Russ.).
  11. Puts G., Crouse P., Ameduri B. Thermal degradation and pyrolysis of polytetrafluoroethylene.Handbook of Fluoropolymer Science and Technology.2014:81–104.
  12. Errede L.A. The Application of Simple Equations for Calculating Bond Dissociation Energies to Thermal Degradation of Fluorocarbons.J. Org. Chem. 1962;27(10):3425–3430.
  13. Coleman W.E. et al. The Identification of Toxic Compounds in the Pyrolysis Products of Polytetrafluoroethylene (PTFE).Am. Ind. Hyg. Assoc. J. 1968;29(1):33–40.
  14. Ellis D.A. et al. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment.Nature.2001;412(6844):321–324.
  15. Simon C.M., Kaminsky W. Chemical recycling of polytetrafluoroethylene by pyrolysis.Polym. Degrad. Stab. 1998;62(1):1–7.
  16. Lonfei J., Jingling W., Shuman X. Mechanisms of pyrolysis of fluoropolymers.J. Anal. Appl. Pyrolysis. 1986;10(2):99–106.
  17. Ajeti A.D., Vyas S. Gas phase product evolution during high temperature pyrolysis of PTFE: Development of ReaxFF simulation protocol.Chem. Eng. J. A.2024;19. 100622.
  18. Van Duin A.C.T. et al. ReaxFF: a reactive force field for hydrocarbons.J. Phys. Chem. A. 2001;105(41):9396–9409.
  19. Morisaki S. Simultaneous thermogravimetry-mass spectrometry and pyrolysis-gas chromatography of fluorocarbon polymers.Thermochim. Acta.1978;25(2):171–183.
  20. Meissner E., Wróblewska A., Milchert E. Technological parameters of pyrolysis of waste polytetrafluoroethylene.Polym. Degrad. Stab. 2004;83(1):163–172.
  21. Tao J. et al. Reactivity and reaction mechanism of Al-PTFE mechanically activated energetic composites.FirePhyChem. 2021;1(2):123–128.
  22. Purser D.A. Recent developments in understanding the toxicity of PTFE thermal decomposition products.Fire Mater. 1992;16(2):67–75.
  23. Warheit D.B. et al. Attenuation of perfluoropolymer fume pulmonary toxicity: effect of filters, combustion method, and aerosol age.Exp. Mol. Pathol. 1990;52(3):309–329.
  24. De Vega R.G. et al. Studying the degradation of bulk PTFE into microparticles via SP ICP-MS: a systematically developed method for the detection of F-containing particles.J. Anal. At. Spectrom. 2024;39(8):2030–2037.
  25. Sullivan G.L. et al. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF).Chemosphere. 2020;249. 126179.
  26. Skedung L., Savvidou E., Schellenberger S. et al. Identification and quantification of fluorinated polymers in consumer products by combustion ion chromatography and pyrolysis-gas chromatography-mass spectrometry.Environ. Sci.: Processes Impacts. 2024;26:82–93.
  27. Tsvetnikov A.K. Ehnergo- i resursosberegayushchie materialy na osnove ul’tradispersnogo nizkomolekulyarnogo politetraftorehtilena.Vestnik of the FEB RAS. 2021;(5):93–108. (In Russ.).
  28. Pavlov A.D., Sukhoverkhov S.V., Tsvetnikov A.K. Ispol’zovanie piroliticheskoi khromatomass-spetkrometrii dlya opredeleniya sostava FORUMa i ego fraktsii.Vestnik of the FEB RAS. 2011;(5):72–75. (In Russ.).
  29. Pavlov A.D., Sukhoverkhov S.V., Tsvetnikov A.K. Ispol’zovanie piroliticheskoi khromatomass-spektrometrii dlya identifikatsii nanodispersnykh ftorpolimernykh materialov.Vestnik of theFEB RAS. 2013;(5):39–43. (In Russ.).
  30. Pavlov A.D., Sukhoverkhov S.V., Tsvetnikov A.K. Primenenie khimicheskoi ionizatsii dlya izucheniya mass-spektrometricheskoi fragmentatsii nizkomolekulyarnykh politetraftorehtilenov. In:Polimery v nauke i tekhnike: Vserossiiskaya nauchnaya Internet-konferentsiya s mezhdunarodnym uchastiem: materialy konferentsii (Kazan’, 10 iyunya 2014 g.). Kazan’; 2014. S. 43–48. (In Russ.).
  31. Rudnev V.S., Vaganov-Vil’kins A.A., Tsvetnikov A.K., Nedozorov P.M., Yarovaya T.P., Kuryavyi V.G., Dmitrieva E.Eh., Kirichenko E.A. Nekotorye kharakteristiki kompozitnykh politetraftorehtilen-oksidnykh pokrytii na splave alyuminiya.Fizikokhimiya Poverkhnosti i Zashchita Materialov. 2015;51(1):79–93. (In Russ.).
  32. Rudnev V.S., Vaganov-Vil’kins A.A., Yarovaya T.P., Pavlov A.D. Polytetrafluoroethylene-oxide coatings on aluminum alloys.Surf. Coat. Technol. 2016;307:1249–1254.
  33. Vaganov-Vil’kins A.A., Rudnev V.S., Pavlov A.D., Sukhoverkhov S.V., Kostin V.I., Lukiyanchuk I.V. IR and Py-GC/MS investigation of composite PTFE/PEO coatings on aluminum.Mater. Chem. Phys. 2019;221:436–446.
  34. Pavlov A.D., Sukhoverkhov S.V., Prokuda N.A. Primenenie piroliticheskoi khromatomass-spektrometrii i mnogomernoi gazovoi khromatografii dlya issledovaniya nizkomolekulyarnogo politetraftorehtilena. In:Khimicheskaya nauka: sovremennye dostizheniya i istoricheskaya perspektiva: I Vserossiiskaya nauchnaya internet-konferentsiya s mezhdunarodnym uchastiem: materialy konf. (Kazan’, 29 marta 2013 g.). Kazan’: IP Sinyaev D.N.; 2013. S. 118–120. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).