Лектины морских беспозвоночных: выделение, свойства и биологическая активность
- Авторы: Чикаловец И.В.1, Мизгина Т.О.1, Фильштейн А.П.1, Кузьмич А.С.1, Черников О.В.1
-
Учреждения:
- Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДВО РАН
- Выпуск: № 1 (2025)
- Страницы: 104-119
- Раздел: К 60-летию Тихоокеанского института биоорганической химии им. Г.Б. Елякова ДВО РАН (1964–2024 гг.) Химические науки. Биоорганическая химия
- URL: https://ogarev-online.ru/0869-7698/article/view/307668
- DOI: https://doi.org/10.31857/S0869769825010079
- EDN: https://elibrary.ru/hhlicw
- ID: 307668
Цитировать
Полный текст
Аннотация
Интерес к морским организмам обусловлен большим содержанием в них биологически активных веществ, которые являются объектами фундаментальных и прикладных медико-биологических исследований и эффективны для разработки терапевтических и профилактических средств против широкого спектра заболеваний. В лаборатории химии неинфекционного иммунитета ТИБОХ ДВО РАН проводят исследования по поиску, выделению, установлению структуры, изучению физико-химических свойств и биологической активности лектинов из морских беспозвоночных. Из двустворчатых моллюсков были выделены лектины разной углеводной специфичности, физиологическая роль которых заключается в участии во врожденном иммунитете моллюсков. Эти белки обладают разной биологической активностью, в том числе антибактериальной и антипролиферативной.
Ключевые слова
Об авторах
И. В. Чикаловец
Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДВО РАН
Автор, ответственный за переписку.
Email: ivchik6@mail.ru
Владивосток, Россия
Т. О. Мизгина
Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДВО РАН
Email: tanya.tasha@mail.ru
Владивосток, Россия
А. П. Фильштейн
Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДВО РАН
Email: alishichka@mail.ru
Владивосток, Россия
А. С. Кузьмич
Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДВО РАН
Email: assavina@mail.ru
Владивосток, Россия
О. В. Черников
Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДВО РАН
Email: chernikov@piboc.dvo.ru
Владивосток, Россия
Список литературы
- Freitas A.C., Rodrigues D., Rocha-Santos T.A.P., Gomes A.M.P., Duarte A.C. Marine biotechnology advances towards applications in new functional foods // Biotechnol. Adv. 2012. Vol. 30, N6. P. 1506–1515.
- Ogawa T., Watanabe M., Naganuma T., Muramoto K. Diversified carbohydrate-binding lectins from marine resources // J. Amino Acids. 2011. Vol. 2011. P. 838914.
- Bonnardel F., Mariethoz J., Salentin S., Robin X., Schroeder M., Perez S., Lisacek F.D.S., Imberty A. UniLectin3D, a database of carbohydrate binding proteins with curated information on 3D structures and interacting ligands // Nucleic Acids Res. 2019. Vol. 47, N D1. P. D1236–D1244.
- Лутаенко К.А., Волвенко И.Е.Малый атлас двустворчатых моллюсков залива Петра Великого (Японское море). 2-е изд. / под ред. А.В. Адрианова. Владивосток: Дальневосточный федеральный университет, 2022. 138 с.
- Ahmmed M.K., Bhowmik S., Giteru S.G., Zilani M.N.H., Adadi P., Islam S.S., Kanwugu O.N., Haq M., Ahmmed F., Ng C.C.W., Chan Y.S., Asadujjaman M., Chan G.H.H., Naude R., Bekhit A.E.D.A., Ng T.B., Wong J.H. An update of lectins from marine organisms: characterization, extraction methodology, and potential biofunctional applications // Mar. Drugs. 2022. Vol. 20, N7. 430.
- Cheung R.C., Wong J.H., Pan W., Chan Y.S., Yin C., Dan X., Ng T.B. Marine lectins and their medicinal applications // Appl. Microbiol. Biotechnol. 2015. Vol. 99, N9. P. 3755–3773.
- Chettri D., Boro M., Sarkar L., Verma A.K. Lectins: biological significance to biotechnological application // Carbohydr. Res. 2021. Vol. 506. 108367.
- Nascimento Kel.S., Cunha A.I., Nascimento Kyr.S., Cavada B.S., Azevedo A.M., Aires-Barros M.R. An overview of lectins purification strategies // J. Mol. Recognit. 2012. Vol. 25, N11. P. 527–541.
- Belogortseva N.I., Molchanova V.I., Kurika A. V, Skobun A.S., Glazkova V.E. Isolation and characterization of new GalNAc/Gal-specific lectin from the sea musselCrenomytilus grayanus // Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 1998. Vol. 119, N1. P. 45–50.
- Chikalovets I.V., Kondrashina A.S., Chernikov O.V., Molchanova V.I., Luk’yanov P.A. Isolation and general characteristics of lectin from the musselMytilus trossulus // Chem. Nat. Compd. 2013. Vol. 48, N6. P. 1058–1061.
- Chikalovets I., Filshtein A., Molchanova V., Mizgina T., Lukyanov P., Nedashkovskaya O., Hua K.-F.K.-F., Chernikov O. Activity dependence of a novel lectin family on structure and carbohydrate-binding properties // Molecules. 2019. Vol. 25, N1. 150.
- Mizgina T.O., Chikalovets I.V., Bulanova T.A., Molchanova V.I., Filshtein A.P., Ziganshin R.H., Rogozhin E.A., Shilova N.V., Chernikov O.V. New L-rhamnose-binding lectin from the bivalveGlycymeris yessoensis: purification, partial structural characterization and antibacterial activity // Mar. Drugs. 2023. Vol. 22, N1. 27.
- Mizgina T.O., Chikalovets I.V., Molchanova V.I., Kokoulin M.S., Filshtein A.P., Sidorin E.V., Chernikov O.V. Lectin of the bivalveGlycymeris yessoensisas a pattern recognition receptor // Russ. J. Bioorganic Chem. 2020. Vol. 46, N6. P. 1187–1197.
- Mizgina T.O., Chikalovets I.V., Molchanova V.I., Ziganshin R.H., Chernikov O.V. Identification and characterization of a novel lectin from the clamGlycymeris yessoensisand its functional characterization under microbial stimulation and environmental stress // Mar. Drugs. 2021. Vol. 19, N9. 474.
- Wang W., Song X., Wang L., Song L. Pathogen-derived carbohydrate recognition in molluscs immune defense // Int. J. Mol. Sci. 2018. Vol. 19, N3. 721.
- Song L., Wang L., Qiu L., Zhang H. Bivalve immunity // Adv. Exp. Med. Biol. 2010. Vol. 708. P. 44–65.
- Kovalchuk S.N., Chikalovets I.V., Chernikov O.V., Molchanova V.I., Li W., Rasskazov V.A., Lukyanov P.A. CDNA cloning and structural characterization of a lectin from the musselCrenomytilus grayanuswith a unique amino acid sequence and antibacterial activity // Fish Shellfish Immunol. 2013. Vol. 35, N4. P. 1320–1324.
- Chikalovets I.V., Kovalchuk S.N., Litovchenko A.P., Molchanova V.I., Pivkin M.V., Chernikov O.V. A new Gal/GalNAc-specific lectin from the musselMytilus trossulus: structure, tissue specificity, antimicrobial and antifungal activity // Fish Shellfish Immunol. 2016. Vol. 50. P. 27–33.
- Nabi-Afjadi M., Heydari M., Zalpoor H., Arman I., Sadoughi A.,Sahami P., Aghazadeh S. Lectins and lectibodies: potential promising antiviral agents // Cell. Mol. Biol. Lett. 2022. Vol. 27, N1. 37.
- Liu Z., Luo Y., Zhou T.-T., Zhang W.-Z. Could plant lectins become promising anti-tumour drugs for causing autophagic cell death? // Cell Prolif. 2013. Vol. 46, N5. P. 509–515.
- Hashim O.H., Jayapalan J.J., Lee C.S.Lectins: an effective tool for screening of potential cancer biomarkers // Peer J. 2017. Vol. 5, N9. e3784.
- Carrizo M.E., Capaldi S., Perduca M., Irazoqui F.J., Nores G.A., Monaco H.L. The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl // J. Biol. Chem. 2005. Vol. 280, N11. P. 10614–10623.
- Lorca T., Labbe J.C., Devault A., Fesquet D., Capony J.P., Cavadore J.C., Le Bouffant F., Doree M.Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase // EMBO J. 1992. Vol. 11, N7. P. 2381–2390.
- Norbury C., Blow J., Nurse P. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates // EMBO J. 1991. Vol. 10, N11. P. 3321–3329.
- Jessus C., Ozon R. Function and regulation of cdc25 proteinphosphate through mitosis and meiosis // Prog. Cell Cycle Res. 1995. Vol. 1. P. 215–228.
- Blasina A., Van de Weyer I., Laus M.C., Luyten W.H.M.L., Parker A.E., McGowan C.H. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase // Curr. Biol. 1999. Vol. 9, N1. P. 1–10.
- Zeng Y., Forbes K.C., Wu Z., Moreno S., Piwnica-Worms H., Enoch T. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1 // Nature. 1998. Vol. 395, N6701. P. 507–510.
- Young A.R.J., Narita M., Ferreira M., Kirschner K.,Sadaie M., Darot J.F.J., Tavaré S., Arakawa S., Shimizu S., Watt F.M., Narita M. Autophagy mediates the mitotic senescence transition // Genes Dev. 2009. Vol. 23, N7. P. 798–803.
- Chernikov O., Kuzmich A.,Chikalovets I., Molchanova V., Hua K.-F. Lectin CGL from the sea musselCrenomytilus grayanusinduces Burkitt’s lymphoma cells death via interaction with surface glycan // Int. J. Biol. Macromol. 2017. Vol. 104. P. 508–514.
Дополнительные файлы
