The Influence of Light Quality and Intensity on the Development of Solanum tuberosum L. microplants

Cover Page

Cite item

Full Text

Abstract

The paper studies the effect of monochromatic light of the red, green and blue spectrum ranges with different levels of irradiation intensity (30–1400 μmol/s⸳m2) on the development of potato microplants (Solanum tuberosumL., variety Red Scarlett). The highest values of plant height and weight parameters were observed in samples grown under red light, and the lowest in groups illuminated with blue light. Blue light limited stem growth and contributed more to the formation of large leaves. Morphometric parameters of plants grown under green light were higher than those grown under blue light, but lower than the values of samples from sections with red light. The following illumination intensities were optimal for the development of potato microplants: 500–600 μmol/s⸳m2under blue and green light, and 800–1000 μmol/s⸳m2under red light.

About the authors

Yu. N. Kulchin

Institute of Automation and Control Processes, FEB RAS

Author for correspondence.
Email: kulchin@iacp.dvo.ru
Vladivostok, Russia

I. V. Gafitskaya

Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS

Email: gafitskaya@biosoil.ru
Vladivostok, Russia

O. V. Nakonechnaya

Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS

Email: markelova@biosoil.ru
Vladivostok, Russia

S. O. Kozhanov

Institute of Automation and Control Processes, FEB RAS

Email: kozhanov_57@mail.ru
Vladivostok, Russia

A. S. Kholin

Institute of Automation and Control Processes, FEB RAS

Email: a_kholin@dvo.ru
Vladivostok, Russia

E. P. Subbotin

Institute of Automation and Control Processes, FEB RAS

Email: s.e.p@list.ru
Vladivostok, Russia

N. I. Subbotina

Institute of Automation and Control Processes, FEB RAS

Email: sale789@mail.ru
Vladivostok, Russia

References

  1. Villavicencio G.E., Gámez V.A.J., Arellano M.A., Almeida H.J., Fernández J. Micropropagation in four potato genotypes and selection on vitroplants size as a survival ex vitro establishment.Acta Horticulturae (The Hague). 2007;748:223–227. https://doi.org/10.17660/ActaHortic.2007.748.30.
  2. Rocha P.S.G., de Oliveira R.P., Scivittaro W.B. New light sources forin vitropotato micropropagation.Bioscience Journal. 2015;31:1312–1318. doi: 10.14393/BJ-v31n5a2015-26601.
  3. Pundir R.K., Pathak A., Upadhyaya D.C., Muthusamy A., Upadhyaya C.P. Red and Blue Light-Emitting Diodes Significantly Improve Tuberization of Potato (L.).Journal of Horticultural Research. 2021;29:95–108. https://doi.org/10.2478/johr-2021-0010.
  4. Jiang L., Wang Z., Jin G., Lu D., Li X. Responses of Favorita Potato Plantlets Culturedin Vitrounder Fluorescent and Light-Emitting Diode (LED) Light Sources.American Journal of Potato Research. 2019;96:396–402. https://doi.org/10.1007/s12230-019-09725-8.
  5. Chen Li-li, Zhang Kai, Gong Xiao-chen, Wang Hao-ying, Gao You-hui, Wang Xi-quan, Zeng Zhao-hai, Hu Yue-gao. Effects of different LEDs light spectrum on the growth, leaf anatomy, and chloroplast ultrastructure of potato plantletsin vitroand minituber production after transplanting in the greenhouse.Journal of Integrative Agriculture. 2020;19:108–119. https://doi.org/10.1016/S2095-3119(19)62633-X.
  6. Grishchenko O.V., Subbotin E.P., Gafitskaya I.V., Vereshchagina Y.V., Burkovskaya E.V., Khrolenko Y.A., Grigorchuk V.P.,Nakonechnaya O.V., Bulgakov V.P., Kulchin Y.N. Growth of micropropagatedSolanum tuberosumL. plantlets under artificial solar spectrum and different mono- and polychromatic LED lights.Horticultural Plant Journal. 2022;8(2):205–214. https://doi.org/10.1016/j.hpj.2021.04.007.
  7. Gafitskaya I.V., Nakonechnaya O.V., Grishchenko O.V., Zhuravlev Y.N.,Subbotin E.P., Kulchin Y.N. Intensivnost’ sveta kak regulyator rosta rastenii kartofelya pri mikroklonirovanii = [Light intensity as a growth regulator of potato plants in microcloning].Aktual’nye problemy kartofelevodstva: fundamental’nye i prikladnye aspekty: materialy Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, 10–13 aprelya 2018 g. Tomsk: Tomsk State University Publishng House; 2018. P. 210–211. (In Russ.).
  8. Kulchin Y.N., Nakonechnaya O.V., Gafitskaya I.V., Grishchenko O.V., Epifanova T.Y., Orlovskaya I.Y., Zhuravlev Y.N.,Subbotin E.P. Plant Morphogenesis under Different Light Intensity.Defect and Diffusion Forum. 2018;386:201–206. https://doi.org/10.4028/www.scientific.net/ddf.386.201.
  9. Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures.Physiologia Plantarum. 1962;15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.
  10. Gafitskaya I.V., Nakonechnaya O.V., Zhuravlev Y.N., Subbotin E.P., Kulchin Y.N. Perspektivy ispol’zovaniya svetodiodnogo izlucheniya pri kul’tivirovaniiin vitrorastenii-regenerantov kartofelya = [Prospects for the use of LED radiation in thein vitrocultivation of potato regenerated plants] // Perspektivy fitobiotekhnologii dlya uluchsheniya kachestva zhizni na Severe: sb. materialov III Nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem i Nauchnoi shkoly po kletochnoi biotekhnologii, 4–8 iyunya 2018 g. Yakutsk: NEFU Publishing House; 2018. P. 35–37. (In Russ.).
  11. Johkan M., Shoji K., Goto F., Hahida S.N., Yoshihara T. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa.Environmental and Experimental Botany. 2012;75:128–133. https://doi.org/10.1016/j.envexpbot.2011.08.010.
  12. Liu J., van Iersel M.W. Photosynthetic Physiology of Blue, Green and Red Light: Light Intensity Effects and Underlying Mechanisms.Frontiers in Plant Science. 2021;12:619987. https://doi.org/10.3389/fpls.2021.619987.
  13. Terashima I.,Fujita T., Inoue T., Chow W.S., Oguchi R. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves.Plant and Cell Physiology. 2009;50(4):684–697. https://doi.org/10.1093/pcp/pcp034.
  14. Frantz J.M., Joly R.J., Mitchell C.A. Intracanopy lighting influences radiation capture, productivity, and leaf senescence in cowpea canopies.Journal of the American Society for Horticultural Science. 2000;125(6):694–701. https://doi.org/10.21273/JASHS.125.6.694.
  15. Lu N., Maruo T., Johkan M., Hohjo M., Tsukagoshi S., Ito Y., Ichimura T., Shinohara Y. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density.Environmental Control in Biology. 2012;50(1):63–74. https://doi.org/10.2525/ecb.50.63.
  16. Smith H.L., McAusland L., Murchie E.H. Don’t ignore the green light: exploring diverse roles in plant processes.Journal of Experimental Botany. 2017;68(9):2099–2110. https://doi.org/10.1093/jxb/erx098.
  17. Kim S.J., Hahn E.J., Hoe J.W., Paek K.Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantletsin vitro.Scientia Horticulturae, Amsterdam. 2004;101(1/2):143–151. https://doi.org/10.1016/j.scienta.2003.10.003.
  18. Nakonechnaya O.V.,Subbotin E.P., Grishchenko O.V., Gafitskaya I.V., Orlovskaya I.Y., Kholin A.S., Goltsova D.O., Subbotina N.I., Bulgakov V.P., Kulchin Y.N.In vitropotato plantlet development under different polychromatic LED spectra and dynamic illumination.Botanica Pacifica. 2021;10(1):69–74. doi: 10.17581/bp.2021.10102.
  19. Nakonechnaya O.V., Gafitskaya I.V., Burkovskaya E.V., Khrolenko Y.A., Grishchenko, O.V., Zhuravlev Y.N., Subbotin E.P., Kulchin Y.N. Effect of Light Intensity on the Morphogenesis of Stevia rebaudianaunderin vitroConditions.Russian Journal of Plant Physiology. 2019;66(4):656–663. https://doi.org/10.1134/S1021443719040095.
  20. Subbotin E.P., Gafitskaya I.V., Nakonechnaya O.V., Zhuravlev Y.N., Kulchin Y.N. Vliyanie iskusstvennogo solnechnogo sveta na rost i razvitie rastenii-regenerantovSolanum tuberosum= [Effect of artificial sunlight on the growth and development of regeneratedSolanum tuberosumplants].Turczaninowia. 2018;21(2):32–39. (In Russ.).
  21. Kulchin Y.N., Goltsova D.O., Subbotin E.P. Reguliruyushchee deistvie sveta na rasteniya = [Regulating Effect of Light on Plants].Photonics Russia. 2020;14(2):192–212. https://doi.org/10.22184/1993-7296.FRos.2020.14.2.192.210. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».