Динамика рекуррентных нейронных сетей с кусочно-линейной функцией активации в задаче контекстно-зависимого принятия решения

Обложка

Цитировать

Полный текст

Аннотация

Цель данной работы — исследовать динамические механизмы решения рекуррентными нейронными сетями когнитивной задачи двухальтернативного выбора с контекстом, вырабатываемые в процессе обучения с подкреплением, и развить методологию анализа таких моделей на основе теории динамических систем. Методы. Построен ансамбль нейросетей с кусочно-линейной функцией активации. Модели оптимизировались с помощью метода обучения с подкреплением — проксимального обновления стратегии. Структура испытания с постоянными стимулами в течение длительного этапа позволяет трактовать входы в качестве параметров системы и рассматривать систему как автономную на конечных временных интервалах. Результаты. Выявлен и описан динамический механизм двухальтернативного выбора в терминах аттракторов автономных систем. Описаны возможные типы аттракторов в рассматриваемой модели и изучено распределение типов аттракторов в ансамбле моделей относительно параметров когнитивной задачи. В полученных сетях выявлено устойчивое по ансамблю моделей разделение на функциональные популяции. Исследован процесс эволюции состава данных популяций в процессе обучения. На основе полученного понимания динамического механизма была сконструирована двумерная сеть, решающая упрощённую задачу двухальтернативного выбора без контекста. Заключение. Предложенный подход позволяет качественно описать механизм решения задачи в терминах аттракторов. Подобное описание позволяет исследовать динамику функциональных моделей и выделять стоящие за динамическими объектами популяции. Данный подход позволяет отслеживать эволюцию аттракторов системы и соответствующих популяций в процессе обучения.  

Об авторах

Роман Андреевич Кононов

Институт прикладной физики РАН (ИПФ РАН); Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)

ORCID iD: 0009-0008-0441-1559
SPIN-код: 8925-5441
Scopus Author ID: 57212471765
603950, г. Нижний Новгород. ГСП - 120, ул. Ульянова, 46

Олег Владимирович Масленников

Институт прикладной физики РАН (ИПФ РАН); Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)

ORCID iD: 0000-0002-8909-321X
Scopus Author ID: 56370370000
ResearcherId: D-4789-2013
603950, г. Нижний Новгород. ГСП - 120, ул. Ульянова, 46

Владимир Исаакович Некоркин

Институт прикладной физики РАН (ИПФ РАН); Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)

ORCID iD: 0000-0003-0173-587X
Scopus Author ID: 7004468484
ResearcherId: H-4014-2016
603950, г. Нижний Новгород. ГСП - 120, ул. Ульянова, 46

Список литературы

  1. Sussillo D. Neural circuits as computational dynamical systems // Curr. Opin. Neurobiol. 2014. Vol. 25. P. 156-163. doi: 10.1016/j.conb.2014.01.008.
  2. Marblestone A. H., Wayne G., Kording K. P. Toward an integration of deep learning and neuroscience // Frontiers in Computational Neuroscience. 2016. Vol. 10. P. 94. doi: 10.3389/fncom.2016.00094.
  3. Barak O. Recurrent neural networks as versatile tools of neuroscience research // Curr. Opin. Neurobiol. 2017. Vol. 46. P. 1–6. doi: 10.1016/j.conb.2017.06.003.
  4. Richards B. A., Lillicrap T. P., Beaudoin P., Bengio Y., Bogacz R., Christensen A., Clopath C., Costa R. P., de Berker A., Ganguli S., Gillon C. J., Hafner D., Kepecs A., Kriegeskorte N., Latham P., Lindsay G. W., Miller K. D., Naud R., Pack Ch. C., Poirazi P., Roelfsema P., Sacramento J., Saxe A., Scellier B., Schapiro A. C., Senn W., Wayne G., Yamins D., Zenke F., Zylberberg J., Therien D., Kording K. P. A deep learning framework for neuroscience // Nature Neuroscience. 2019. Vol. 22, no. 11. P. 1761–1770. doi: 10.1038/s41593-019-0520-2.
  5. Ehrlich D. B., Stone J. T., Brandfonbrener D., Atanasov A., Murray J. D. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks // Eneuro. 2021. Vol. 8, no. 1. doi: 10.1523/ENEURO.0427-20.2020.
  6. Durstewitz D., Koppe G., Thurm M. I. Reconstructing computational system dynamics from neural data with recurrent neural networks // Nature Reviews Neuroscience. 2023. Vol. 24, no. 11. P. 693–710. doi: 10.1038/s41583-023-00740-7.
  7. Mante V., Sussillo D., Shenoy K. V., Newsome W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex // Nature. 2013. Vol. 503, no. 7474. P. 78–84. DOI: doi.org/10.1038/nature12742.
  8. McNaughton B. L., Battaglia F. P., Jensen O., Moser E. I., Moser M.-B. Path integration and the neural basis of the “cognitive map” // Nature Reviews Neuroscience. 2006. Vol. 7, no. 8. P. 663–678. doi: 10.1038/nrn1932.
  9. Yang G. Rt., Wang X.-J. Artificial neural networks for neuroscientists: A primer // Neuron. 2020. Vol. 107, no. 6. P. 1048–1070. doi: 10.1016/j.neuron.2020.09.005.
  10. Bernaez T. L., Ekelmans P., Kraynyukova N., Rose T., Busse L., Tchumatchenko T. How to incorporate biological insights into network models and why it matters // The Journal of Physiology. 2023. Vol. 601(15). P. 3037–3053. doi: 10.1113/JP282755.
  11. Vyas S., Golub M. D., Sussillo D., Shenoy K. V. Computation through neural population dynamics // Annual Review of Neuroscience. 2020. Vol. 43. P. 249–275. doi: 10.1146/annurev-neuro-092619-094115.
  12. Sussillo D., Abbott L. F. Generating coherent patterns of activity from chaotic neural networks // Neuron. 2009. Vol. 63, no. 4. P. 544–557. doi: 10.1016/j.neuron.2009.07.018.
  13. Kriegeskorte N., Xue-Xin W. Neural tuning and representational geometry // Nature Reviews Neuroscience. 2021. Vol. 22, no. 11. C. 703–718. doi: 10.1038/s41583-021-00502-3.
  14. Khona M., Fiete I. R. Attractor and integrator networks in the brain // Nature Reviews Neuroscience. 2022. Vol. 23, no. 12. P. 744–766. doi: 10.1038/s41583-022-00642-0.
  15. Langdon Ch., Genkin M., Engel T. A. A unifying perspective on neural manifolds and circuits for cognition // Nature Reviews Neuroscience. 2023. Vol. 24, no. 6. P. 363–377. doi: 10.1038/s41583-023-00693-x.
  16. Масленников О. В., Пугавко М. М., Щапин Д. С., Некоркин В. И. Нелинейная динамика и машинное обучение рекуррентных спайковых нейронных сетей // Успехи физических наук. 2022. Т. 65, № 12. doi: 10.3367/UFNr.2021.08.039042.
  17. Maslennikov O. V., Nekorkin V. I. Stimulus-induced sequential activity in supervisely trained recurrent networks of firing rate neurons // Nonlinear Dynamics. 2020. Vol. 101, no. 2. P. 1093–1103. doi: 10.1007/s11071-020-05787-0.
  18. Pugavko M. M, Maslennikov O. V., Nekorkin V. I. Dynamics of spiking map-based neural networks in problems of supervised learning // Communications in Nonlinear Science, Numerical Simulation. 2020. Vol. 90. P. 105399. doi: 10.1016/j.cnsns.2020.105399.
  19. Пугавко М. М., Масленников О. В., Некоркин В. И. Динамика сети дискретных модельных нейронов при контролируемом обучении системы резервуарных вычислений // Известия вузов. Прикладная нелинейная динамика. 2020. Т. 28, № 1. C. 77–89. doi: 10.18500/0869-6632-2020-28-1-77-89.
  20. Maslennikov O. V., Nekorkin V. I. Collective dynamics of rate neurons for supervised learning in a reservoir computing system // Chaos. 2019. Vol. 29, no. 10. P. 103126. doi: 10.1063/1.5119895.
  21. Parga N., Serrano-Fernandez L., Falco-R. J. Emergent computations in trained artificial neural networks and real brains // Journal of Instrumentation. 2023. Vol. 18, no. 02. P. C02060. doi: 10.1088/1748-0221/18/02/C02060.
  22. Pugavko M. M., Maslennikov O. V., Nekorkin V. I. Multitask computation through dynamics in recurrent spiking neural networks // Scientific Reports. 2023. Vol. 13, no. 1. P. 3997. doi: 10.1038/s41598-023-31110-z.
  23. Schulman J., Wolski F., Dhariwal P., Radford A., Klimov O. Proximal policy optimization algorithms. arXiv:1707.06347; 2017. doi: 10.48550/arXiv.1707.06347.
  24. Diederik P. K., Jimmy B. Adam: A Method for Stochastic Optimization. arXiv:1412.6980; 2017. doi: 10.48550/arXiv.1412.6980.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».