Динамика рекуррентных нейронных сетей с кусочно-линейной функцией активации в задаче контекстно-зависимого принятия решения
- Авторы: Кононов Р.А.1,2, Масленников О.В.1,2, Некоркин В.И.1,2
-
Учреждения:
- Институт прикладной физики РАН (ИПФ РАН)
- Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)
- Выпуск: Том 33, № 2 (2025)
- Страницы: 249-265
- Раздел: Нелинейная динамика и нейронаука
- URL: https://ogarev-online.ru/0869-6632/article/view/292841
- DOI: https://doi.org/10.18500/0869-6632-003147
- EDN: https://elibrary.ru/ANWDXK
- ID: 292841
Цитировать
Полный текст
Аннотация
Об авторах
Роман Андреевич Кононов
Институт прикладной физики РАН (ИПФ РАН); Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)
ORCID iD: 0009-0008-0441-1559
SPIN-код: 8925-5441
Scopus Author ID: 57212471765
603950, г. Нижний Новгород. ГСП - 120, ул. Ульянова, 46
Олег Владимирович Масленников
Институт прикладной физики РАН (ИПФ РАН); Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)
ORCID iD: 0000-0002-8909-321X
Scopus Author ID: 56370370000
ResearcherId: D-4789-2013
603950, г. Нижний Новгород. ГСП - 120, ул. Ульянова, 46
Владимир Исаакович Некоркин
Институт прикладной физики РАН (ИПФ РАН); Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)
ORCID iD: 0000-0003-0173-587X
Scopus Author ID: 7004468484
ResearcherId: H-4014-2016
603950, г. Нижний Новгород. ГСП - 120, ул. Ульянова, 46
Список литературы
- Sussillo D. Neural circuits as computational dynamical systems // Curr. Opin. Neurobiol. 2014. Vol. 25. P. 156-163. doi: 10.1016/j.conb.2014.01.008.
- Marblestone A. H., Wayne G., Kording K. P. Toward an integration of deep learning and neuroscience // Frontiers in Computational Neuroscience. 2016. Vol. 10. P. 94. doi: 10.3389/fncom.2016.00094.
- Barak O. Recurrent neural networks as versatile tools of neuroscience research // Curr. Opin. Neurobiol. 2017. Vol. 46. P. 1–6. doi: 10.1016/j.conb.2017.06.003.
- Richards B. A., Lillicrap T. P., Beaudoin P., Bengio Y., Bogacz R., Christensen A., Clopath C., Costa R. P., de Berker A., Ganguli S., Gillon C. J., Hafner D., Kepecs A., Kriegeskorte N., Latham P., Lindsay G. W., Miller K. D., Naud R., Pack Ch. C., Poirazi P., Roelfsema P., Sacramento J., Saxe A., Scellier B., Schapiro A. C., Senn W., Wayne G., Yamins D., Zenke F., Zylberberg J., Therien D., Kording K. P. A deep learning framework for neuroscience // Nature Neuroscience. 2019. Vol. 22, no. 11. P. 1761–1770. doi: 10.1038/s41593-019-0520-2.
- Ehrlich D. B., Stone J. T., Brandfonbrener D., Atanasov A., Murray J. D. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks // Eneuro. 2021. Vol. 8, no. 1. doi: 10.1523/ENEURO.0427-20.2020.
- Durstewitz D., Koppe G., Thurm M. I. Reconstructing computational system dynamics from neural data with recurrent neural networks // Nature Reviews Neuroscience. 2023. Vol. 24, no. 11. P. 693–710. doi: 10.1038/s41583-023-00740-7.
- Mante V., Sussillo D., Shenoy K. V., Newsome W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex // Nature. 2013. Vol. 503, no. 7474. P. 78–84. DOI: doi.org/10.1038/nature12742.
- McNaughton B. L., Battaglia F. P., Jensen O., Moser E. I., Moser M.-B. Path integration and the neural basis of the “cognitive map” // Nature Reviews Neuroscience. 2006. Vol. 7, no. 8. P. 663–678. doi: 10.1038/nrn1932.
- Yang G. Rt., Wang X.-J. Artificial neural networks for neuroscientists: A primer // Neuron. 2020. Vol. 107, no. 6. P. 1048–1070. doi: 10.1016/j.neuron.2020.09.005.
- Bernaez T. L., Ekelmans P., Kraynyukova N., Rose T., Busse L., Tchumatchenko T. How to incorporate biological insights into network models and why it matters // The Journal of Physiology. 2023. Vol. 601(15). P. 3037–3053. doi: 10.1113/JP282755.
- Vyas S., Golub M. D., Sussillo D., Shenoy K. V. Computation through neural population dynamics // Annual Review of Neuroscience. 2020. Vol. 43. P. 249–275. doi: 10.1146/annurev-neuro-092619-094115.
- Sussillo D., Abbott L. F. Generating coherent patterns of activity from chaotic neural networks // Neuron. 2009. Vol. 63, no. 4. P. 544–557. doi: 10.1016/j.neuron.2009.07.018.
- Kriegeskorte N., Xue-Xin W. Neural tuning and representational geometry // Nature Reviews Neuroscience. 2021. Vol. 22, no. 11. C. 703–718. doi: 10.1038/s41583-021-00502-3.
- Khona M., Fiete I. R. Attractor and integrator networks in the brain // Nature Reviews Neuroscience. 2022. Vol. 23, no. 12. P. 744–766. doi: 10.1038/s41583-022-00642-0.
- Langdon Ch., Genkin M., Engel T. A. A unifying perspective on neural manifolds and circuits for cognition // Nature Reviews Neuroscience. 2023. Vol. 24, no. 6. P. 363–377. doi: 10.1038/s41583-023-00693-x.
- Масленников О. В., Пугавко М. М., Щапин Д. С., Некоркин В. И. Нелинейная динамика и машинное обучение рекуррентных спайковых нейронных сетей // Успехи физических наук. 2022. Т. 65, № 12. doi: 10.3367/UFNr.2021.08.039042.
- Maslennikov O. V., Nekorkin V. I. Stimulus-induced sequential activity in supervisely trained recurrent networks of firing rate neurons // Nonlinear Dynamics. 2020. Vol. 101, no. 2. P. 1093–1103. doi: 10.1007/s11071-020-05787-0.
- Pugavko M. M, Maslennikov O. V., Nekorkin V. I. Dynamics of spiking map-based neural networks in problems of supervised learning // Communications in Nonlinear Science, Numerical Simulation. 2020. Vol. 90. P. 105399. doi: 10.1016/j.cnsns.2020.105399.
- Пугавко М. М., Масленников О. В., Некоркин В. И. Динамика сети дискретных модельных нейронов при контролируемом обучении системы резервуарных вычислений // Известия вузов. Прикладная нелинейная динамика. 2020. Т. 28, № 1. C. 77–89. doi: 10.18500/0869-6632-2020-28-1-77-89.
- Maslennikov O. V., Nekorkin V. I. Collective dynamics of rate neurons for supervised learning in a reservoir computing system // Chaos. 2019. Vol. 29, no. 10. P. 103126. doi: 10.1063/1.5119895.
- Parga N., Serrano-Fernandez L., Falco-R. J. Emergent computations in trained artificial neural networks and real brains // Journal of Instrumentation. 2023. Vol. 18, no. 02. P. C02060. doi: 10.1088/1748-0221/18/02/C02060.
- Pugavko M. M., Maslennikov O. V., Nekorkin V. I. Multitask computation through dynamics in recurrent spiking neural networks // Scientific Reports. 2023. Vol. 13, no. 1. P. 3997. doi: 10.1038/s41598-023-31110-z.
- Schulman J., Wolski F., Dhariwal P., Radford A., Klimov O. Proximal policy optimization algorithms. arXiv:1707.06347; 2017. doi: 10.48550/arXiv.1707.06347.
- Diederik P. K., Jimmy B. Adam: A Method for Stochastic Optimization. arXiv:1412.6980; 2017. doi: 10.48550/arXiv.1412.6980.
Дополнительные файлы
