Моделирование динамики нейронных осцилляторов типа Ходжкина–Хаксли при помощи нейронной сети

Обложка

Цитировать

Полный текст

Аннотация

Цель настоящего исследования — представить подробное описание процедуры создания и обучения нейросетевого отображения на примере моделирования динамики нейронного осциллятора типа Ходжкина–Хаксли; показать, что нейросетевые отображения, обученные для одиночного осциллятора, можно использовать в качестве элементов связанной системы, моделирующей поведение связанных осцилляторов. Методы. В работе используется численный метод решения жёстких систем обыкновенных дифференциальных уравнений. Также применяется процедура обучения нейронных сетей на основе метода обратного распространения ошибки и алгоритма оптимизации Adam, который представляет собой модифицированный алгоритм градиентного спуска с автоматической подстройкой шага. Результаты. Показано, что построенные согласно описанной процедуре нейросетевые отображения с высокой точностью воспроизводят динамику одиночных нейронных осцилляторов. Кроме того, без дополнительного обучения эти отображения можно использовать как элементы связанной системы для моделирования динамики связанных систем нейронных осцилляторов. Заключение. Описанное нейросетевое отображение может рассматриваться как новая универсальная конструкция для моделирования сложной динамики. В отличие от моделей на основе разложения в ряды (степенные, тригонометрические), нейросетевое отображение не требует отбрасывания старших членов. Следовательно, оно позволяет моделировать процессы с произвольным порядком нелинейности, и по этой причине есть основания полагать, что в некоторых аспектах оно окажется более эффективным. Развитый в работе подход на основе использования нейросетевого отображения можно рассматривать в некотором смысле как альтернативу традиционным численным методам моделирования динамики. Актуальным этот подход делает бурное развитие в настоящее время технологий создания быстродействующего вычислительного оборудования, поддерживающего обучение и работу нейронных сетей.

Об авторах

Павел Владимирович Купцов

Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ); Саратовский государственный технический университет имени Гагарина Ю.А. (СГТУ)

ORCID iD: 0000-0003-2685-9828
SPIN-код: 4657-0026
Scopus Author ID: 55901658100
ResearcherId: Q-7505-2016
410019 Саратов, ул. Зеленая, 38 Телефон: (8452) 24-58-23

Наталия Владимировна Станкевич

Высшая школа экономики; Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)

ORCID iD: 0000-0002-4781-0567
Scopus Author ID: 13409207300
ResearcherId: I-9346-2014
101000, Россия, Москва, ул. Мясницкая, 20

Список литературы

  1. Levin E., Gewirtzman R., Inbar G. F. Neural network architecture for adaptive system modeling and control // Neural Networks. 1991. Vol. 4, no. 2. P. 185–191. doi: 10.1016/0893-6080(91)90003-N.
  2. Grieger B., Latif M. Reconstruction of the El Nino attractor with neural networks // Climate Dynamics. 1994. Vol. 10, no. 6–7. P. 267–276. doi: 10.1007/BF00228027.
  3. Zimmermann H. G., Neuneier R. Combining state space reconstruction and forecasting by neural networks // In: Bol G., Nakhaeizadeh G., Vollmer K. H. (eds) Datamining und Computational Finance. Vol. 174 of Wirtschaftswissenschaftliche Beitrage. Heidelberg: Physica, 2000. P. 259–267. doi: 10.1007/978-3-642-57656-0_13.
  4. Gilpin W., Huang Y., Forger D. B. Learning dynamics from large biological data sets: Machine learning meets systems biology // Current Opinion in Systems Biology. 2020. Vol. 22. P. 1–7. doi: 10.1016/j.coisb.2020.07.009.
  5. Колмогоров А. Н. О представлении непрерывных функций нескольких переменных суперпозициями непрерывных функций меньшего числа переменных // ДАН СССР. 1956. Т. 108, № 2. С. 179–182.
  6. Арнольд В. И. О функциях трех переменных // ДАН СССР. 1957. Т. 114, № 4. С. 679–681.
  7. Колмогоров А. Н. О представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения // ДАН СССР. 1957. Т. 114, № 5. С. 953–956.
  8. Cybenko G. Approximation by superpositions of a sigmoidal function // Mathematics of Control, Signals and Systems. 1989. Vol. 2, no. 4. P. 303–314. doi: 10.1007/BF02551274.
  9. Горбань А. Н. Обобщенная аппроксимационная теорема и точное представление многочленов от нескольких переменных суперпозициями многочленов от одного переменного // Известия вузов. Математика. 1998. № 5 (432). С. 6–9.
  10. Хайкин С. Нейронные сети: полный курс. 2-е издание. М.: Издательский дом «Вильямс», 2006. 1104 с.
  11. Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. СПб.: Питер, 2018. 480 с.
  12. Cook S. CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Morgan Kaufmann, 2012. 592 p.
  13. Jouppi N. P., Young C., Patil N., Patterson D., Agrawal G., Bajwa R., Bates S., Bhatia S., Boden N., Borchers A., Boyle R., Cantin P.-L., Chao C., Clark C., Coriell J., Daley M., Dau M., Dean J., Gelb B., Ghaemmaghami T. V., Gottipati R., Gulland W., Hagmann R., Ho C. R., Hogberg D., Hu J., Hundt R., Hurt D., Ibarz J., Jaffey A., Jaworski A., Kaplan A., Khaitan H., Killebrew D., Koch A., Kumar N., Lacy S., Laudon J., Law J., Le D., Leary C., Liu Z., Lucke K., Lundin A., MacKean G., Maggiore A., Mahony M., Miller K., Nagarajan R., Narayanaswami R., Ni R., Nix K., Norrie T., Omernick M., Penukonda N., Phelps A., Ross J., Ross M., Salek A., Samadiani E., Severn C., Sizikov G., Snelham M., Souter J., Steinberg D., Swing A., Tan M., Thorson G., Tian B., Toma H., Tuttle E., Vasudevan V., Walter R., Wang W., Wilcox E., Yoon D. H. In-datacenter performance analysis of a Tensor Processing Unit // ACM SIGARCH Computer Architecture News. 2017. Vol. 45, no. 2. P. 1–12. doi: 10.1145/3140659.3080246.
  14. Welser J., Pitera J. W., Goldberg C. Future computing hardware for AI // In: 2018 IEEE International Electron Devices Meeting (IEDM). 1-5 December 2018, San Francisco, CA, USA. New York: IEEE, 2018. P. 131–136. doi: 10.1109/IEDM.2018.8614482.
  15. Karras K., Pallis E., Mastorakis G., Nikoloudakis Y., Batalla J. M., Mavromoustakis C. X., Markakis E. A hardware acceleration platform for AI-based inference at the edge // Circuits, Systems, and Signal Processing. 2020. Vol. 39, no. 2. P. 1059–1070. doi: 10.1007/s00034-019- 01226-7.
  16. Kuptsov P. V., Kuptsova A. V., Stankevich N. V. Artificial neural network as a universal model of nonlinear dynamical systems // Russian Journal of Nonlinear Dynamics. 2021. Vol. 17, no. 1. P. 5–21. doi: 10.20537/nd210102.
  17. Kuptsov P. V., Stankevich N. V., Bagautdinova E. R. Discovering dynamical features of Hodgkin– Huxley-type model of physiological neuron using artificial neural network // Chaos, Solitons & Fractals. 2023. Vol. 167. P. 113027. doi: 10.1016/j.chaos.2022.113027.
  18. Sherman A., Rinzel J., Keizer J. Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing // Biophysical Journal. 1988. Vol. 54, no. 3. P. 411–425. doi: 10.1016/S0006- 3495(88)82975-8.
  19. Stankevich N., Mosekilde E. Coexistence between silent and bursting states in a biophysical Hodgkin-Huxley-type of model // Chaos. 2017. Vol. 27, no. 12. P. 123101. doi: 10.1063/1.4986401.
  20. Malashchenko T., Shilnikov A., Cymbalyuk G. Six types of multistability in a neuronal model based on slow calcium current // PLoS ONE. 2011. Vol. 6, no. 7. P. e21782. doi: 10.1371/journal.pone. 0021782.
  21. Rozhnova M. A., Pankratova E. V., Stasenko S. V., Kazantsev V. B. Bifurcation analysis of multistability and oscillation emergence in a model of brain extracellular matrix // Chaos, Solitons & Fractals. 2021. Vol. 151. P. 111253. doi: 10.1016/j.chaos.2021.111253.
  22. Pankratova E. V., Sinitsina M. S., Gordleeva S., Kazantsev V. B. Bistability and chaos emergence in spontaneous dynamics of astrocytic calcium concentration // Mathematics. 2022. Vol. 10, no. 8. P. 1337. doi: 10.3390/math10081337.
  23. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes: The Art of Scientific Computing. 3rd Edition. New York: Cambridge University Press, 2007. 1256 p.
  24. Shilnikov A., Cymbalyuk G. Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe // Phys. Rev. Lett. 2005. Vol. 94, no. 4. P. 048101. doi: 10.1103/PhysRevLett. 94.048101.
  25. Markovic D., Mizrahi A., Querlioz D., Grollier J. Physics for neuromorphic computing // Nature Reviews Physics. 2020. Vol. 2. P. 499–510. doi: 10.1038/s42254-020-0208-2.
  26. Stankevich N., Koseska A. Cooperative maintenance of cellular identity in systems with intercellular communication defects // Chaos. 2020. Vol. 30, no. 1. P. 013144. doi: 10.1063/1.5127107.
  27. Kingma D. P., Ba J. Adam: A method for stochastic optimization // arXiv:1412.6980. arXiv Preprint, 2014. doi: 10.48550/arXiv.1412.6980.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».