Modeling of the Hodgkin–Huxley neural oscillators dynamics using an artificial neural network
- Autores: Kuptsov P.V.1,2, Stankevich N.V.3,4,1
-
Afiliações:
- Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
- Yuri Gagarin State Technical University of Saratov
- National Research University "
- Higher School of Economics"
- Edição: Volume 32, Nº 1 (2024)
- Páginas: 72-95
- Seção: Articles
- URL: https://ogarev-online.ru/0869-6632/article/view/252044
- DOI: https://doi.org/10.18500/0869-6632-003079
- EDN: https://elibrary.ru/VCXHMY
- ID: 252044
Citar
Texto integral
Resumo
Sobre autores
Pavel Kuptsov
Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences; Yuri Gagarin State Technical University of Saratov
ORCID ID: 0000-0003-2685-9828
Código SPIN: 4657-0026
Scopus Author ID: 55901658100
Researcher ID: Q-7505-2016
ul. Zelyonaya, 38, Saratov, 410019, Russia
Nataliya Stankevich
National Research University "Higher School of Economics"; Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
ORCID ID: 0000-0002-4781-0567
Scopus Author ID: 13409207300
Researcher ID: I-9346-2014
ul. Myasnitskaya 20, Moscow, 101000, Russia
Bibliografia
- Levin E., Gewirtzman R., Inbar G. F. Neural network architecture for adaptive system modeling and control // Neural Networks. 1991. Vol. 4, no. 2. P. 185–191. doi: 10.1016/0893-6080(91)90003-N.
- Grieger B., Latif M. Reconstruction of the El Nino attractor with neural networks // Climate Dynamics. 1994. Vol. 10, no. 6–7. P. 267–276. doi: 10.1007/BF00228027.
- Zimmermann H. G., Neuneier R. Combining state space reconstruction and forecasting by neural networks // In: Bol G., Nakhaeizadeh G., Vollmer K. H. (eds) Datamining und Computational Finance. Vol. 174 of Wirtschaftswissenschaftliche Beitrage. Heidelberg: Physica, 2000. P. 259–267. doi: 10.1007/978-3-642-57656-0_13.
- Gilpin W., Huang Y., Forger D. B. Learning dynamics from large biological data sets: Machine learning meets systems biology // Current Opinion in Systems Biology. 2020. Vol. 22. P. 1–7. doi: 10.1016/j.coisb.2020.07.009.
- Колмогоров А. Н. О представлении непрерывных функций нескольких переменных суперпозициями непрерывных функций меньшего числа переменных // ДАН СССР. 1956. Т. 108, № 2. С. 179–182.
- Арнольд В. И. О функциях трех переменных // ДАН СССР. 1957. Т. 114, № 4. С. 679–681.
- Колмогоров А. Н. О представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения // ДАН СССР. 1957. Т. 114, № 5. С. 953–956.
- Cybenko G. Approximation by superpositions of a sigmoidal function // Mathematics of Control, Signals and Systems. 1989. Vol. 2, no. 4. P. 303–314. doi: 10.1007/BF02551274.
- Горбань А. Н. Обобщенная аппроксимационная теорема и точное представление многочленов от нескольких переменных суперпозициями многочленов от одного переменного // Известия вузов. Математика. 1998. № 5 (432). С. 6–9.
- Хайкин С. Нейронные сети: полный курс. 2-е издание. М.: Издательский дом «Вильямс», 2006. 1104 с.
- Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. СПб.: Питер, 2018. 480 с.
- Cook S. CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Morgan Kaufmann, 2012. 592 p.
- Jouppi N. P., Young C., Patil N., Patterson D., Agrawal G., Bajwa R., Bates S., Bhatia S., Boden N., Borchers A., Boyle R., Cantin P.-L., Chao C., Clark C., Coriell J., Daley M., Dau M., Dean J., Gelb B., Ghaemmaghami T. V., Gottipati R., Gulland W., Hagmann R., Ho C. R., Hogberg D., Hu J., Hundt R., Hurt D., Ibarz J., Jaffey A., Jaworski A., Kaplan A., Khaitan H., Killebrew D., Koch A., Kumar N., Lacy S., Laudon J., Law J., Le D., Leary C., Liu Z., Lucke K., Lundin A., MacKean G., Maggiore A., Mahony M., Miller K., Nagarajan R., Narayanaswami R., Ni R., Nix K., Norrie T., Omernick M., Penukonda N., Phelps A., Ross J., Ross M., Salek A., Samadiani E., Severn C., Sizikov G., Snelham M., Souter J., Steinberg D., Swing A., Tan M., Thorson G., Tian B., Toma H., Tuttle E., Vasudevan V., Walter R., Wang W., Wilcox E., Yoon D. H. In-datacenter performance analysis of a Tensor Processing Unit // ACM SIGARCH Computer Architecture News. 2017. Vol. 45, no. 2. P. 1–12. doi: 10.1145/3140659.3080246.
- Welser J., Pitera J. W., Goldberg C. Future computing hardware for AI // In: 2018 IEEE International Electron Devices Meeting (IEDM). 1-5 December 2018, San Francisco, CA, USA. New York: IEEE, 2018. P. 131–136. doi: 10.1109/IEDM.2018.8614482.
- Karras K., Pallis E., Mastorakis G., Nikoloudakis Y., Batalla J. M., Mavromoustakis C. X., Markakis E. A hardware acceleration platform for AI-based inference at the edge // Circuits, Systems, and Signal Processing. 2020. Vol. 39, no. 2. P. 1059–1070. doi: 10.1007/s00034-019- 01226-7.
- Kuptsov P. V., Kuptsova A. V., Stankevich N. V. Artificial neural network as a universal model of nonlinear dynamical systems // Russian Journal of Nonlinear Dynamics. 2021. Vol. 17, no. 1. P. 5–21. doi: 10.20537/nd210102.
- Kuptsov P. V., Stankevich N. V., Bagautdinova E. R. Discovering dynamical features of Hodgkin– Huxley-type model of physiological neuron using artificial neural network // Chaos, Solitons & Fractals. 2023. Vol. 167. P. 113027. doi: 10.1016/j.chaos.2022.113027.
- Sherman A., Rinzel J., Keizer J. Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing // Biophysical Journal. 1988. Vol. 54, no. 3. P. 411–425. doi: 10.1016/S0006- 3495(88)82975-8.
- Stankevich N., Mosekilde E. Coexistence between silent and bursting states in a biophysical Hodgkin-Huxley-type of model // Chaos. 2017. Vol. 27, no. 12. P. 123101. doi: 10.1063/1.4986401.
- Malashchenko T., Shilnikov A., Cymbalyuk G. Six types of multistability in a neuronal model based on slow calcium current // PLoS ONE. 2011. Vol. 6, no. 7. P. e21782. doi: 10.1371/journal.pone. 0021782.
- Rozhnova M. A., Pankratova E. V., Stasenko S. V., Kazantsev V. B. Bifurcation analysis of multistability and oscillation emergence in a model of brain extracellular matrix // Chaos, Solitons & Fractals. 2021. Vol. 151. P. 111253. doi: 10.1016/j.chaos.2021.111253.
- Pankratova E. V., Sinitsina M. S., Gordleeva S., Kazantsev V. B. Bistability and chaos emergence in spontaneous dynamics of astrocytic calcium concentration // Mathematics. 2022. Vol. 10, no. 8. P. 1337. doi: 10.3390/math10081337.
- Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes: The Art of Scientific Computing. 3rd Edition. New York: Cambridge University Press, 2007. 1256 p.
- Shilnikov A., Cymbalyuk G. Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe // Phys. Rev. Lett. 2005. Vol. 94, no. 4. P. 048101. doi: 10.1103/PhysRevLett. 94.048101.
- Markovic D., Mizrahi A., Querlioz D., Grollier J. Physics for neuromorphic computing // Nature Reviews Physics. 2020. Vol. 2. P. 499–510. doi: 10.1038/s42254-020-0208-2.
- Stankevich N., Koseska A. Cooperative maintenance of cellular identity in systems with intercellular communication defects // Chaos. 2020. Vol. 30, no. 1. P. 013144. doi: 10.1063/1.5127107.
- Kingma D. P., Ba J. Adam: A method for stochastic optimization // arXiv:1412.6980. arXiv Preprint, 2014. doi: 10.48550/arXiv.1412.6980.
Arquivos suplementares
