On the probabilistic description of the asynchronous phases occurrence in intermittent generalized synchronization regime of one-dimensional maps
- Авторлар: Koronovskii A.A.1, Moskalenko O.I.1, Selskii A.O.1
-
Мекемелер:
- Saratov State University
- Шығарылым: Том 33, № 2 (2025)
- Беттер: 153-164
- Бөлім: Bifurcation in dynamical systems. Deterministic chaos. Quantum chaos
- URL: https://ogarev-online.ru/0869-6632/article/view/292835
- DOI: https://doi.org/10.18500/0869-6632-003149
- EDN: https://elibrary.ru/DCOYIK
- ID: 292835
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
Aleksei Koronovskii
Saratov State University
ORCID iD: 0000-0003-3585-317X
Scopus Author ID: 7004189995
ResearcherId: C-5597-2008
ul. Astrakhanskaya, 83, Saratov, 410012, Russia
Olga Moskalenko
Saratov State University
ORCID iD: 0000-0001-5727-5169
Scopus Author ID: 10038769200
ResearcherId: D-4420-2011
ul. Astrakhanskaya, 83, Saratov, 410012, Russia
Anton Selskii
Saratov State University
ORCID iD: 0000-0003-3175-895X
SPIN-код: 7269-0414
Scopus Author ID: 54882328300
ResearcherId: A-9503-2015
ul. Astrakhanskaya, 83, Saratov, 410012, Russia
Әдебиет тізімі
- Pikovsky AS, Osipov GV, Rosenblum MG, Zaks M, Kurths J. Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization. Phys. Rev. Lett. 1997;79(1):47–50. doi: 10.1103/PhysRevLett.79.47.
- Boccaletti S, Allaria E, Meucci R, Arecchi FT. Experimental characterization of the transition to phase synchronization of chaotic CO2 laser systems. Phys. Rev. Lett. 2002;89(19):194101. doi: 10.1103/PhysRevLett.89.194101.
- Hramov AE, Koronovskii AA, Kurovskaya MK, Boccaletti S. Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization. Phys. Rev. Lett. 2006;97(11):114101. doi: 10.1103/PhysRevLett.97.114101.
- Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 1997;78(22):4193–4196. doi: 10.1103/PHYSREVLETT.78.4193.
- Boccaletti S, Valladares DL. Characterization of intermittent lag synchronization. Phys. Rev. E. 2000;62(5):7497–7500. doi: 10.1103/PhysRevE.62.7497.
- Pyragas K. Properties of generalized synchronization of chaos. Nonlinear Analysis: Modelling and Control. 1998;IMI(3):101–129. doi: 10.15388/NA.1998.3.0.15261.
- Hramov AE, Koronovskii AA. Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators. Europhysics Lett. 2005;70(2):169–175. doi: 10.1209/epl/i2004-10488-6.
- Koronovskii AA, Moskalenko OI, Pivovarov AA, Khanadeev VA, Hramov AE, Pisarchik AN. Jump intermittency as a second type of transition to and from generalized synchronization. Phys. Rev. E. 2020;102(1):012205. doi: 10.1103/PhysRevE.102.012205.
- Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E. 1995;51(2):980–994. doi: 10.1103/PhysRevE.51.980.
- Rulkov NF. Images of synchronized chaos: Experiments with circuits. Chaos. 1996;6(3):262–279. doi: 10.1063/1.166174.
- Pyragas K. Weak and strong synchronization of chaos. Phys. Rev. E. 1996;54(5):R4508–R4511. doi: 10.1103/PhysRevE.54.R4508.
- Pyragas K. Conditional Lyapunov exponents from time series. Phys. Rev. E. 1997;56(5):5183–5188. doi: 10.1103/PhysRevE.56.5183.
- Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors, phase tubes, and generalized synchronization. Phys. Rev. E. 2011;84(3):037201. doi: 10.1103/PhysRevE.84.037201.
- Abarbanel HDI, Rulkov NF, Sushchik MM. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E. 1996;53(5):4528–4535. doi: 10.1103/PhysRevE.53.4528.
- Berge P, Pomeau Y, Vidal C. Order within Chaos. New York: John Wiley and Sons; 1984. 329 p.
- Manneville P, Pomeau Y. Different ways to turbulence in dissipative dynamical systems. Physica D. 1980;1(2):219–226. doi: 10.1016/0167-2789(80)90013-5.
- Koronovskii AA, Moskalenko OI, Selskii AO. Intermittent generalized synchronization and modified system approach: Discrete maps. Phys. Rev. E. 2024;109:064217. doi: 10.1103/PhysRevE.109.064217.
- Hramov AE, Koronovskii AA, Moskalenko OI. Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators? Phys. Lett. A. 2006;354(5–6):423–427. doi: 10.1016/j.physleta.2006.01.079.
- Hramov AE, Koronovskii AA. Generalized synchronization: a modified system approach. Phys. Rev. E. 2005;71(6):067201. doi: 10.1103/PhysRevE.71.067201.
- Herzel H, Freund J. Chaos, noise, and synchronization reconsidered. Phys. Rev. E. 1995;52(3):3238–3241. doi: 10.1103/PHYSREVE.52.3238.
- Shuai JW, Wong KW. Noise and synchronization in chaotic neural networks. Phys. Rev. E. 1998;57(6):7002–7007. doi: 10.1103/PhysRevE.57.7002.
- Pakdaman K, Mestivier D. Noise induced synchronization in a neuronal oscillator. Physica D. 2004;192(1):123–137. doi: 10.1016/j.physd.2003.12.006.
Қосымша файлдар
