Reconstruction of self-oscillating systems with delay time modulation

封面

如何引用文章

全文:

详细

The aim of our research is to study the possibility of reconstruction from time series the self-oscillating systems with variable time delay, demonstrating regimes of turbulent and laminar chaos. Methods. The object of study is self-oscillating systems described by delay-differential equations, in which the delay time is modulated by an external periodic signal. The possibility of estimating the parameters of systems with delay time modulation from their time series is considered using the known method for reconstructing systems with constant delay time, which is based on statistical analysis of time intervals between all possible pairs of extrema in time series. A new method for estimating the parameters of systems with variable delay time is proposed, based on statistical analysis of time intervals between two successive extrema in time series. Results. It is shown that in some cases the known methods for reconstructing systems with constant delay time are also effective for reconstructing systems with varying delay time. With their help, one can estimate the mean delay time and recove the nonlinear function of the system. The proposed method, aimed at application to time-delay systems with delay time modulation, allows one to estimate the frequency and amplitude of delay time modulation. Conclusion. The obtained results are of interest to various scientific disciplines that study systems with variable delay times based on their time series.  

作者简介

Vladimir Ponomarenko

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0002-1579-6465
Scopus 作者 ID: 35613865300
Researcher ID: H-2602-2012
ul. Zelyonaya, 38, Saratov, 410019, Russia

Mihail Prokhorov

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0003-4069-9410
ul. Zelyonaya, 38, Saratov, 410019, Russia

参考

  1. Erneux T. Applied Delay Differential Equations. New York: Springer-Verlag, 2009. 204 p. doi: 10.1007/978-0-387-74372-1.
  2. Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press. 1993. 398 p.
  3. Farmer J. Chaotic attractors of an infinite-dimensional dynamical system // Physica D: Nonlinear Phenomena. 1982. Vol. 4, iss. 3. P. 366–393. doi: 10.1016/0167-2789(82)90042-2.
  4. Senthilkumar D. V., Lakshmanan M. Delay time modulation induced oscillating synchronization and intermittent anticipatory/lag and complete synchronizations in time-delay nonlinear dynamical systems // Chaos. 2007. Vol. 17, iss 1. 013112. doi: 10.1063/1.2437651.
  5. Lazarus L., Davidow M., Rand R. Dynamics of an oscillator with delay parametric excitation // Int. J. Nonlinear Mech. 2016. Vol. 78. P. 66-71. doi: 10.1016/j.ijnonlinmec.2015.10.005.
  6. Григорьева Е. В., Кащенко С. А. Квазипериодические и хаотические релаксационные колебания в модели лазера с переменным запаздыванием в цепи обратной связи // Доклады Академии Наук. 2017. Т. 474, № 2. С. 159-163. doi: 10.7868/S0869565217140043.
  7. Muller D., Otto A., Radons G. Laminar chaos // Phys. Rev. Lett. 2018. Vol. 120. 084102. doi: 10.1103/PhysRevLett.120.084102.
  8. Кульминский Д. Д., Пономаренко В. И., Прохоров М. Д. Ламинарный хаос в генераторе с запаздывающей обратной связью // Письма в журнал технической физики. 2020. Т. 46, вып. 9. С. 16-19. doi: 10.21883/PJTF.2020.09.49366.18218.
  9. Muller-Bender D., Otto A., Radons G. Resonant Doppler effect in systems with variable delay // Phil. Trans. R. Soc. A. 2019. Vol. 377, iss. 2153. 20180119. doi: 10.1098/rsta.2018.0119.
  10. Muller-Bender D., Radons G. Laminar chaos in systems with quasiperiodic delay // Physical Review E. 2023. Vol. 107, iss. 1. 014205. doi: 10.1103/PhysRevE.107.014205.
  11. Hart J. D., Roy R., Muller-Bender D., Otto A., Radons G. Laminar chaos in experiments: Nonlinear systems with time-varying delays and noise // Physical Review Letters. 2019. Vol. 123, iss. 15. 154101. doi: 10.1103/PhysRevLett.123.154101.
  12. Jungling T., Stemler T., Small M. Laminar chaos in nonlinear electronic circuits with delay clock modulation // Phys. Rev. E. 2020. Vol. 101, iss. 1. 012215. doi: 10.1103/PhysRevE.101.012215.
  13. Кульминский Д. Д., Пономаренко В. И., Прохоров М. Д. Ламинарный хаос в связанных системах с запаздыванием // Письма в ЖТФ. 2022. Т. 48, № 4. С. 11-14. doi: 10.21883/PJTF.2022.04.52077.19044.
  14. Пономаренко В. И., Лапшева Е. Е., Курбако А. В., Прохоров М. Д. Ламинарный хаос в экспериментальной системe с квазипериодической модуляцией времени запаздывания // Письма в ЖТФ. 2024. Т. 50, вып. 11. С. 34-37.
  15. Bunner M. J., Ciofini M., Giaquinta A., Hegger R., Kantz H., Meucci R., Politi A. Reconstruction of systems with delayed feedback: II. Application // Eur. Phys. J. D. 2000. Vol. 10. P. 177–187. doi: 10.1007/s100530050539.
  16. Udaltsov V. S., Goedgebuer J.-P., Larger L., Cuenot J.-B., Levy P., Rhodes W. T. Cracking chaosbased encryption systems ruled by nonlinear time delay differential equations // Phys. Lett. A. 2003. Vol. 308, iss. 1. P. 54–60. doi: 10.1016/S0375-9601(02)01776-0.
  17. Prokhorov M. D., Ponomarenko V. I., Karavaev A. S., Bezruchko B. P. Reconstruction of timedelayed feedback systems from time series // Physica D. 2005. Vol. 203, no. 3–4. P. 209–223. doi: 10.1016/j.physd.2005.03.013.
  18. Bezruchko B. P., Karavaev A. S., Ponomarenko V. I., Prokhorov M. D. Reconstruction of time-delay systems from chaotic time series // Physical Review E. 2001. Vol. 64, iss. 5. 056216. doi: 10.1103/PhysRevE.64.056216.
  19. Muller-Bender D., Otto A., Radons G., Hart J. D., Roy R. Laminar chaos in experiments and nonlinear delayed Langevin equations: A time series analysis toolbox for the detection of laminar chaos // Physical Review E. 2020. Vol. 101, iss. 3. 032213. doi: 10.1103/PhysRevE.101.032213.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).