Stochastic stability of an autoresonance model with a center–saddle bifurcation

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to investigate the effect of stochastic perturbations of the white noise type on the stability of capture into autoresonance in oscillating systems with a variable pumping amplitude and frequency such that a center–saddle bifurcation occurs in the corresponding limiting autonomous system. The another purpose is determine the dependence of the intervals of stochastic stability of the autoresonance on the noise intensity. Methods. The existence of autoresonant regimes with increasing amplitude is proved by constructing and justificating asymptotic solutions in the form of power series with constant coefficients. The stability of solutions in terms of probability with respect to noise is substantiated using stochastic Lyapunov functions. Results. The conditions are described under which the autoresonant regime is preserved and disappears when the parameters pass through bifurcation values. The dependence of the intervals of stochastic stability of autoresonance on the degree of damping of the noise intensity is found. It is shown that more stringent restrictions are required to preserve the stability of solutions for the bifurcation values of the parameters. Conclusion. At the level of differential equations describing capture into autoresonance, the effect of damped stochastic perturbations on the center–saddle bifurcation is studied. The results obtained indicate the possibility of using damped oscillating perturbations for stable control of nonlinear systems.

About the authors

Oskar Anvarovich Sultanov

Institute of Mathematics with Computing Centre; Saint Petersburg State University

ORCID iD: 0000-0003-1970-3382
SPIN-code: 7442-076
Scopus Author ID: 42562037700
ResearcherId: B-1626-2016
Russia, 450008, Ufa, Chernyshevsky st., 112

References

  1. Калякин Л. А. Асимптотический анализ моделей авторезонанса // Успехи математических наук. 2008. Т. 63, № 5(383). С. 3–72. doi: 10.4213/rm9237.
  2. Friedland L. Autoresonance in nonlinear systems // Scholarpedia. 2009. Vol. 4, no. 1. P. 5473. doi: 10.4249/scholarpedia.5473.
  3. Sultanov O. A. Damped perturbations of systems with center-saddle bifurcation // International Journal of Bifurcation and Chaos. 2021. Vol. 31, no. 9. P. 2150137. doi: 10.1142/S02181274215 01376.
  4. Khalil H. K. Nonlinear Systems. Englewood Cliffs, NJ: Prentice-Hall, 2002. 750 p.
  5. Боголюбов Н. Н., Митропольский Ю. А. Асимптотические методы в теории нелинейных колебаний. М.: Госиздат технико-теоретической литературы, 1955. 448 с.
  6. Шамсутдинов М. А., Калякин Л. А., Сухоносов А. Л., Харисов А. Т. Управление квазирелятивистской динамикой доменной стенки в режиме автофазировки // Физика металлов и металловедение. 2010. Т. 110, № 5. С. 451–462.
  7. Øksendal B. Stochastic Differential Equations: An Introduction with Applications. Berlin, Heidelberg: Springer, 1998. 324 p. doi: 10.1007/978-3-662-03620-4.
  8. Markus L. Asymptotically autonomous differential systems // In: Lefschetz S. (ed) Contributions to the Theory of Nonlinear Oscillations (AM-36). Vol. III. Princeton: Princeton University Press, 1956. P. 17–29. doi: 10.1515/9781400882175-003.
  9. Вентцель А. Д., Фрейдлин М. И. Флуктуации в динамических системах под действием малых случайных возмущений. М.: Наука, 1979. 424 с.
  10. Sultanov O. A. Bifurcations in asymptotically autonomous Hamiltonian systems subject to multiplicative noise // International Journal of Bifurcation and Chaos. 2022. Vol. 32, no. 11. P. 2250164. doi: 10.1142/S0218127422501644.
  11. Хасьминский Р. З. Устойчивость систем дифференциальных уравнений при случайных возмущениях их параметров. М.: Наука, 1969. 370 с.
  12. Sultanov O. White noise perturbation of locally stable dynamical systems // Stochastics and Dynamics. 2017. Vol. 17, no. 1. P. 1750002. doi: 10.1142/S0219493717500022.
  13. Султанов О. А. Стохастическая устойчивость динамической системы, возмущенной белым шумом // Математические заметки. 2017. Т. 101, № 1. С. 130–139. doi: 10.4213/mzm11108.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».