On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Aim of this work is to study the possibility of existence of multistability near the boundary of generalized synchronization in systems with complex attractor topology. Unidirectionally coupled Lorentz systems have been chosen as an object of study, and a modified auxiliary system method has been used to detect the presence of the synchronous regime. Result of the work is a proof of the presence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with a complex topology of attractor. For this purpose, the basins of attraction of the synchronous and asynchronous states of interacting Lorenz systems have been obtained for the value of the coupling parameter corresponding to the realization of the intermittent generalized synchronization regime in the system under study, and the dependence of the multistability measure on the value of the coupling parameter has also been calculated. It is shown that in the regime of intermittent generalized synchronization the measure of multistability turns out to be positive, which is an additional confirmation of the presence of multistability in this case.

Авторлар туралы

Olga Moskalenko

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Evgeniy Evstifeev

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Әдебиет тізімі

  1. Pisarchik A. N., Feudel U. Control of multistability // Physics Reports. 2014. Vol. 540, no. 4. P. 167-218. doi: 10.1016/j.physrep.2014.02.007.
  2. Attneave F. Multistability in perception // Sci. Am. 1971. Vol. 225, no. 6. P. 63-71. DOI: 10.1038/ scientificamerican1271-62.
  3. Безручко Б. П., Селезнев Е. П., Смирнов Е. В. Эволюция бассейнов притяжения аттракторов симметрично связанных систем с удвоением периода // Письма в ЖТФ. 1995. Т. 21, № 8. С. 12-17.
  4. Eschenazi E., Solari H. G., Gilmore R. Basins of attraction in driven dynamical systems // Phys. Rev. A. 1989. Vol. 39, no. 5. P. 2609-2627. doi: 10.1103/PhysRevA.39.2609.
  5. Moreno-Bote R., Rinzel J., Rubin N. Noise-induced alternations in an attractor network model of perceptual bistability // Journal of Neurophysiology. 2007. Vol. 98, no. 3. P. 1125-1139. doi: 10.1152/jn.00116.2007.
  6. Feudel U. Complex dynamics in multistable systems // International Journal of Bifurcation and Chaos. 2008. Vol. 18, no. 6. P. 1607-1626. doi: 10.1142/S0218127408021233.
  7. Поздняков М. В., Савин А. В. Особенности мультистабильных режимов несимметрично связанных логистических отображений // Известия вузов. ПНД. 2010. Т. 18, № 5. С. 44-53. doi: 10.18500/0869-6632-2010-18-5-44-53.
  8. Postnov D. E., Vadivasova T. E., Sosnovtseva O. V., Balanov A. G., Anishchenko V. S., Mosekilde E. Role of multistability in the transition to chaotic phase synchronization // Chaos. 1999. Vol. 9, no. 1. P. 227-232. doi: 10.1063/1.166394.
  9. Carvalho R., Fernandez B., Vilela Mendes R. From synchronization to multistability in two coupled quadratic maps // Phys. Lett. A. 2001. Vol. 285, no. 5-6. P. 327-338. doi: 10.1016/S0375- 9601(01)00370-X.
  10. Astakhov V., Shabunin A., Uhm W., Kim S. Multistability formation and synchronization loss in coupled Henon maps: Two sides of the single bifurcational mechanism // Phys. Rev. E. 2001. Vol. 63, no. 5. P. 056212. doi: 10.1103/PhysRevE.63.056212.
  11. Pikovsky A., Popovych O., Maistrenko Y. Resolving clusters in chaotic ensembles of globally coupled identical oscillators // Phys. Rev. Lett. 2001. Vol. 87, no. 4. P. 044102. DOI: 10.1103/ PhysRevLett.87.044102.
  12. Campos-Mej´ıa A., Pisarchik A. N., Arroyo-Almanza D. A. Noise-induced on-off intermittency in mutually coupled semiconductor lasers // Chaos, Solitons & Fractals. 2013. Vol. 54. P. 96-100. doi: 10.1016/j.chaos.2013.06.006.
  13. Rulkov N. F., Sushchik M. M., Tsimring L. S., Abarbanel H. D. I. Generalized synchronization of chaos in directionally coupled chaotic systems // Phys. Rev. E. 1995. Vol. 51, no. 2. P. 980-994. doi: 10.1103/PhysRevE.51.980.
  14. Koronovskii A. A., Moskalenko O. I., Hramov A. E. Nearest neighbors, phase tubes, and generalized synchronization // Phys. Rev. E. 2011. Vol. 84, no. 3. P. 037201. doi: 10.1103/PhysRevE.84.037201.
  15. Moskalenko O. I., Koronovskii A. A., Hramov A. E., Boccaletti S. Generalized synchronization in mutually coupled oscillators and complex networks // Phys. Rev. E. 2012. Vol. 86, no. 3. P. 036216. doi: 10.1103/PhysRevE.86.036216.
  16. Hramov A. E., Koronovskii A. A. Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators // Europhys. Lett. 2005. Vol. 70, no. 2. P. 169-175. doi: 10.1209/epl/ i2004-10488-6.
  17. Koronovskii A. A., Moskalenko O. I., Pivovarov A. A., Evstifeev E. V. Intermittent route to generalized synchronization in bidirectionally coupled chaotic oscillators // Chaos. 2020. Vol. 30, no. 8. P. 083133. doi: 10.1063/5.0007156.
  18. Москаленко О. И., Короновский А. А., Ханадеев В. А. Метод выделения характерных фаз поведения в системах со сложной топологией аттрактора, находящихся вблизи границы обобщенной синхронизации // Известия вузов. ПНД. 2020. Т. 28, № 3. С. 274-281. doi: 10.18500/0869-6632-2020-28-3-274-281.
  19. Koronovskii A. A., Moskalenko O. I., Pivovarov A. A., Khanadeev V. A., Hramov A. E., Pisarchik A. N. Jump intermittency as a second type of transition to and from generalized synchronization // Phys. Rev. E. 2020. Vol. 102, no. 1. P. 012205. doi: 10.1103/PhysRevE.102.012205.
  20. Moskalenko O. I., Koronovskii A. A., Selskii A. O., Evstifeev E. V. On multistability near the boundary of generalized synchronization in unidirectionally coupled chaotic systems // Chaos. 2021. Vol. 31, no. 8. P. 083106. doi: 10.1063/5.0055302.
  21. Москаленко О. И., Короновский А. А., Сельский А. О., Евстифеев Е. В. Метод определения характеристик перемежающейся обобщенной синхронизации, основанный на вычислении вероятности наблюдения синхронного режима // Письма в ЖТФ. 2022. Т. 48, № 2. С. 3-6. doi: 10.21883/PJTF.2022.02.51910.18985.
  22. Zheng Z., Wang X., Cross M. C. Transitions from partial to complete generalized synchronizations in bidirectionally coupled chaotic oscillators // Phys. Rev. E. 2002. Vol. 65, no. 5. P. 056211. doi: 10.1103/PhysRevE.65.056211.
  23. Abarbanel H. D. I., Rulkov N. F., Sushchik M. M. Generalized synchronization of chaos: The auxiliary system approach // Phys. Rev. E. 1996. Vol. 53, no. 5. P. 4528-4535. 10.1103/ PhysRevE.53.4528.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».