Reconstruction of integrated equations of periodically driven phase-locked loop system from scalar time series

Cover Page

Cite item

Full Text

Abstract

Purpose of this work is to develop a reconstruction technique for the equations of a phase-locked loop system under periodic external driving from a scalar time series of one variable. Methods. Instead of the original model, we reconstructed a time-integrated model. So, since it is not necessary to evaluate the second derivative of the observable numerically, the method sensitivity to observation noise has significantly decreased. The external periodic driving is approximated with a trigonometric polynomial of time, the antiderivative of which is also a trigonometric polynomial. The assumption about continuity of an unknown nonlinear function is used to construct the target function for optimization. Results. It is shown that the proposed approach gives a significant advantage over the previously developed approach to the reconstruction of non-integrated equations, allowing to achieve acceptable parameter estimates with measurement noise being about 10% of the RMS deviation of the signal even in the presence of external driving. Conclusion. The described approach significantly extends the possibilities of reconstruction of phase-locked loop systems, allowing systems to be reconstructed under arbitrary periodic driving and at the same time significantly increasing noise resistance.

About the authors

Marina Vyacheslavovna Sysoeva

Yuri Gagarin State Technical University of Saratov

ul. Politechnicheskaya, 77, Saratov, 410054, Russia

Maksim Vyacheslavovich Kornilov

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Lev Vyacheslavovich Takaishvili

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Valerij Vladimirovich Matrosov

Lobachevsky State University of Nizhny Novgorod

603950 Nizhny Novgorod, Gagarin Avenue, 23

Ilya V. Sysoev

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Безручко Б. П., Смирнов Д. А. Математическое моделирование и хаотические временные ряды. Саратов: ГосУНЦ «Колледж», 2005. 320 с.
  2. Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol. 1952. Vol. 117, no. 4. P. 500-544. doi: 10.1113/jphysiol.1952.sp004764.
  3. FitzHugh R. Impulses and physiological states in theoretical models of nerve membranes // Biophysical Journal. 1961. Vol. 1, no. 6. P. 445-466. doi: 10.1016/S0006-3495(61)86902-6.
  4. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proc. IRE. 1962. Vol. 50, no. 10. P. 2061-2070. doi: 10.1109/JRPROC.1962.288235.
  5. Hindmarsh J. L., Rose R. M. A model of neuronal bursting using three coupled first order differential equations // Proc. R. Soc. Lond. B. 1984. Vol. 221, no. 1222. P. 87-102. doi: 10.1098/rspb.1984.0024.
  6. Morris C., Lecar H. Voltage oscillations in the barnacle giant muscle fiber // Biophysical Journal. 1981. Vol. 35, no. 1. P. 193-213. doi: 10.1016/S0006-3495(81)84782-0.
  7. Gouesbet G., Letellier C. Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets // Phys. Rev. E. 1994. Vol. 49, no. 6. P. 4955-4972. doi: 10.1103/PhysRevE.49.4955.
  8. Packard N. H., Crutchfield J. P., Farmer J. D., Shaw R. S. Geometry from a time series // Phys. Rev. Lett. 1980. Vol. 45, no. 9. P. 712-716. doi: 10.1103/PhysRevLett.45.712.
  9. Baake E., Baake M., Bock H. G., Briggs K. M. Fitting ordinary differential equations to chaotic data // Phys. Rev. A. 1992. Vol. 45, no. 8. P. 5524-5529. DOI: /10.1103/PhysRevA.45.5524.
  10. Пономаренко В. И., Прохоров М. Д. Оценка порядка и реконструкция модельного уравнения системы с запаздыванием // Письма в ЖТФ. 2006. Т. 32, № 17. С. 73-80.
  11. Ishizaka K., Flanagan J. L. Synthesis of voiced sounds from a two-mass model of the vocal cords // Bell. Syst. Tech. J. 1972. Vol. 51, no. 6. P. 1233-1268. doi: 10.1002/j.1538-7305.1972.tb02651.x.
  12. Barfred M., Mosekilde E., Holstein-Rathlou N.-H. Bifurcation analysis of nephron pressure and flow regulation // Chaos. 1996. Vol. 6, no. 3. P. 280-287. doi: 10.1063/1.166175.
  13. Huys Q. J. M., Ahrens M. B., Paninski L. Efficient estimation of detailed single-neuron models // Journal of Neurophysiology. 2006. Vol. 96, no. 2. P. 872-890. doi: 10.1152/jn.00079.2006.
  14. Шалфеев В. Д. Исследование динамики системы фазовой автоподстройки частоты с разделительным конденсатором в цепи управления // Известия высших учебных заведений. Радиофизика. 1968. Т. 11, № 3. С. 397-406.
  15. Мищенко М. А., Шалфеев В. Д., Матросов В. В. Нейроноподобная динамика в системе фазовой синхронизации // Известия вузов. ПНД. 2012. Т. 20, № 4. С. 122-130. doi: 10.18500/0869- 6632-2012-20-4-122-130.
  16. Matrosov V. V., Mishchenko M. A., Shalfeev V. D. Neuron-like dynamics of a phase-locked loop // The European Physical Journal Special Topics. 2013. Vol. 222, no. 10. P. 2399-2405. doi: 10.1140/epjst/e2013-02024-9.
  17. Мищенко М. А., Большаков Д. И., Матросов В. В. Аппаратная реализация нейроподобного генератора с импульсной и пачечной динамикой на основе системы фазовой синхронизации // Письма в ЖТФ. 2017. Т. 43, № 13. С. 10-18. doi: 10.21883/PJTF.2017.13.44806.16737.
  18. Sysoev I. V., Prokhorov M. D., Ponomarenko V. I., Bezruchko B. P. Reconstruction of ensembles of coupled time-delay systems from time series // Phys. Rev. E. 2014. Vol. 89, no. 6. P. 062911. doi: 10.1103/PhysRevE.89.062911.
  19. Сысоева М. В., Сысоев И. В., Пономаренко В. И., Прохоров М. Д. Реконструкция уравнений нейроподобного осциллятора, моделируемого системой фазовой автоподстройки частоты с запаздыванием, по скалярному временному ряду // Известия вузов. ПНД. 2020. Т. 28, № 4. С. 397-413. doi: 10.18500/0869-6632-2020-28-4-397-413.
  20. Sysoeva M. V., Sysoev I. V., Prokhorov M. D., Ponomarenko V. I., Bezruchko B. P. Reconstruction of coupling structure in network of neuron-like oscillators based on a phase-locked loop // Chaos, Solitons & Fractals. 2021. Vol. 142. P. 110513. doi: 10.1016/j.chaos.2020.110513.
  21. Luttjohann A., Pape H.-C. Regional specificity of cortico-thalamic coupling strength and directionality during waxing and waning of spike and wave discharges // Scientific Reports. 2019. Vol. 9, no. 1. P. 2100. doi: 10.1038/s41598-018-37985-7.
  22. Смирнов Д. А., Сысоев И. В., Селезнев Е. П., Безручко Б. П. Реконструкция моделей неавтономных систем с дискретным спектром воздействия // Письма в ЖТФ. 2003. Т. 29, № 19. С. 69-76.
  23. Мищенко М. А. Нейроноподобная модель на основе системы фазовой автоподстройки частоты // Вестник Нижегородского университета им. Н. И. Лобачевского. 2011. Т. 5, № 3. С. 279-282.
  24. Мищенко М. А., Жукова Н. С., Матросов В. В. Возбуждение фазоуправляемого генератора импульсным воздействием // Известия вузов. ПНД. 2018. Т. 26, № 5. С. 6-19. doi: 10.18500/0869- 6632-2018-26-5-6-19.
  25. Мищенко М. А., Ковалева Н. С., Половинкин А. В., Матросов В. В. Возбуждение фазоуправляемого генератора импульсной последовательностью // Известия вузов. ПНД. 2021. Т. 29, № 2. С. 240-253. doi: 10.18500/0869-6632-2021-29-2-240-253.
  26. Zhang J., Davidson R. M., Wei M., Loew L. M. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons // Biophysical Journal. 1998. Vol. 74, no. 1. P. 48-53. doi: 10.1016/S0006-3495(98)77765-3.
  27. Jin L., Han Z., Platisa J., Wooltorton J. R. A., Cohen L. B., Pieribone V. A. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe // Neuron. 2012. Vol. 75, no. 5. P. 779-785. doi: 10.1016/j.neuron.2012.06.040.
  28. Savitzky A., Golay M. J. E. Smoothing and differentiation of data by simplified least squares procedures // Anal. Chem. 1964. Vol. 36, no. 8. P. 1627-1639. doi: 10.1021/ac60214a047.
  29. Bezruchko B. P., Smirnov D. A. Constructing nonautonomous differential equations from experimental time series // Phys. Rev. E. 2001. Vol. 63, no. 1. P. 016207. doi: 10.1103/PhysRevE.63.016207.
  30. Сысоев И. В., Сысоева М. В., Пономаренко В. И., Прохоров М. Д. Нейроподобная динамика в системе фазовой автоподстройки частоты с запаздывающей обратной связью // Письма в ЖТФ. 2020. Т. 46, № 14. C. 36-38. doi: 10.21883/PJTF.2020.14.49665.18267.
  31. Sysoev I. V. Reconstruction of ensembles of generalized Van der Pol oscillators from vector time series // Physica D. 2018. Vol. 384-385. P. 1-11. doi: 10.1016/j.physd.2018.07.004.
  32. Sysoev I. V., Bezruchko B. P. Noise robust approach to reconstruction of van der Pol-like oscillators and its application to Granger causality // Chaos. 2021. Vol. 31, no. 8. P. 083118. doi: 10.1063/5.0056901.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».