Neurodynamic model for creative cognition of relational networks with even cyclic inhibition

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is study of the neurodynamic foundations of the creative activity of the brain. Modern AI systems using deep neural network training require large amounts of input data, high computational costs and long training times. On the contrary, the brain can learn from small datasets in no time and, crucially, it is fundamentally creative. Methods. The study was carried out through computational experiments with neural networks containing 5 and 7 oscillatory layers (circuits) trained to represent abstract concepts of a certain class of animals. The scheme of neural networks with even cyclic inhibition (ECI networks) contains only bilateral inhibitory connections and consists of two subnets: a reference noncoding network, which is an analogue of the default brain mode neural network, and the main information network that receives time sequences of environmental signals and contextual inputs. After training, the reading of the population phase codes was performed with a simple linear decoder. Results. Conceptual learning of the network leads to the generation of a number of spatial abstract images that are distinguished by the most pronounced features of the relevant line of animals. In computational experiments, a wide set of isomorphic representations of concepts was obtained through: a) transformations of image spaces in a wide range of time scales of the training input signal flow, b) internal regulation of the time scales of mental representations of concepts, c) confirmation on the model of the dependence of psychological proximity of concepts on semantic distance; d) calling from memory (decoding) distributed groups of neurons of animal concepts, which the network has not been trained in. Conclusion. This paper shows for the first time how, using a small set of event input data (a sequence of 4 CCW and 2 CW signals) and very limited computational resources, ECI networks exhibit creative cognitions based on relational relationships, conceptual learning and generalization of knowledge.

About the authors

Valery Davidovich Tsukerman

Southern Federal University

ul. Bol`shaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia

References

  1. Abraham A. The promises and perils of the neuroscience of creativity // Front. Hum. Neurosci. 2013. Vol. 7. P. 246. doi: 10.3389/fnhum.2013.00246.
  2. Benedek M., Fink A. Toward a neurocognitive framework of creative cognition: the role of memory, attention, and cognitive control // Curr. Opin. Behav. Sci. 2019. Vol. 27. P. 116-122. doi: 10.1016/j.cobeha.2018.11.002.
  3. Kenett Y. N., Faust M. A semantic network cartography of the creative mind // Trends Cogn. Sci. 2019. Vol. 23, no. 4. P. 271-274. doi: 10.1016/j.tics.2019.01.007.
  4. Beaty R. E., Chen Q., Christensen A. P., Kenett Y. N., Silvia P. J., Benedek M., Schacter D. L. Default network contributions to episodic and semantic processing during divergent creative thinking: A representational similarity analysis // NeuroImage. 2020. Vol. 209. P. 116499. doi: 10.1016/j.neuroimage.2019.116499.
  5. Vigano S., Piazza M. Distance and direction codes underlie navigation of a novel semantic space in the human brain // J. Neurosci. 2020. Vol. 40, no. 13. P. 2727-2736. doi: 10.1523/JNEUROSCI.1849-19.2020.
  6. Theves S., Fernandez G., Doeller C. F. The hippocampus maps concept space, not feature space // J. Neurosci. 2020. Vol. 40, no. 38. P. 7318-7325. doi: 10.1523/JNEUROSCI.0494-20.2020.
  7. Behrens T. E. J., Muller T. H., Whittington J. C. R., Mark S., Baram A. B., Stachenfeld K. L., KurthNelson Z. What is a cognitive map? Organizing knowledge for flexible behavior // Neuron. 2018. Vol. 100, no. 2. P. 490-509. doi: 10.1016/j.neuron.2018.10.002.
  8. Bottini R., Doeller C. F. Knowledge across reference frames: Cognitive maps and image spaces // Trends Cogn. Sci. 2020. Vol. 24, no. 8. P. 606-619. doi: 10.1016/j.tics.2020.05.008.
  9. Kay K., Chung J. E., Sosa M., Schor J. S., Karlsson M. P., Larkin M. C., Liu D. F., Frank L. M. Constant sub-second cycling between representations of possible futures in the hippocampus // Cell. 2020. Vol. 180, no. 3. P. 552-567. doi: 10.1016/j.cell.2020.01.014.
  10. Raffaelli Q., Wilcox R., Andrews-Hanna J. The neuroscience of imaginative thought: An integrative framework // In: Abraham A. (Ed.) The Cambridge Handbook of the Imagination. Cambridge: Cambridge University Press, 2020. P. 332-353. doi: 10.1017/9781108580298.021.
  11. Amalric M., Wang L., Pica P., Figueira S., Sigman M., Dehaene S. The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers // PLoS Comput. Biol. 2017. Vol. 13, no. 1. P. e1005273. doi: 10.1371/journal.pcbi.1005273.
  12. Цукерман В. Д., Чешков Г. Н. Основы нелинейной динамики сенсорного восприятия. I. Фазовое кодирование в осцилляторных сетях // Нейрокомпьютеры: разработка, применение. 2002. № 7-8. С. 65-72.
  13. Цукерман В. Д. Математическая модель фазового кодирования событий в мозге // Математическая биология и биоинформатика. 2006. Т. 1, № 1. С. 97-107. doi: 10.17537/2006.1.97.
  14. Цукерман В. Д., Еременко З. С., Каримова О. В., Кулаков С. В., Сазыкин А. А. Когнитивная нейродинамика двух стратегий навигационного поведения организмов // Известия вузов. ПНД. 2011. Т. 19, № 6. С. 96-108. doi: 10.18500/0869-6632-2011-19-6-96-108.
  15. O’Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat // Brain Res. 1971. Vol. 34, no. 1. P. 171-175. doi: 10.1016/0006- 8993(71)90358-1.
  16. Hafting T., Fyhn M., Molden S., Moser M.-B., Moser E. I. Microstructure of a spatial map in the entorhinal cortex // Nature. 2005. Vol. 436, no. 7052. P. 801-806. doi: 10.1038/nature03721.
  17. Bellmund J. L. S., Gardenfors P., Moser E. I., Doeller C. F. Navigating cognition: Spatial codes for human thinking // Science. 2018. Vol. 362, no. 6415. P. eaat6766. doi: 10.1126/science.aat6766.
  18. Bernardi S., Benna M. K., Rigotti M., Munuera J., Fusi S., Salzman C. D. The geometry of abstraction in hippocampus and prefrontal cortex // Cell. 2020. Vol. 183, no. 4. P. 954-967. doi: 10.1016/j.cell.2020.09.031.
  19. Kim H. Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison // Neuropsychologia. 2016. Vol. 80. P. 35-46. doi: 10.1016/j.neuropsychologia.2015.11.006.
  20. Marron T. R., Lerner Y., Berant E., Kinreich S., Shapira-Lichter I., Hendler T., Faust M. Chain free association, creativity, and the default mode network // Neuropsychologia. 2018. Vol. 118. P. 40-58. doi: 10.1016/j.neuropsychologia.2018.03.018.
  21. Doeller C. F., Barry C., Burgess N. Evidence for grid cells in a human memory network // Nature. 2010. Vol. 463, no. 7281. P. 657-661. doi: 10.1038/nature08704.
  22. Sharp P. E., Blair H. T., Cho J. The anatomical and computational basis of the rat head-direction cell signal // Trends Neurosci. 2001. Vol. 24, no. 5. P. 289-294. doi: 10.1016/S0166-2236(00)01797-5.
  23. Sargolini F., Fyhn M., Hafting T., McNaughton B. L., Witter M. P., Moser M.-B., Moser E. I. Conjunctive representation of position, direction, and velocity in entorhinal cortex // Science. 2006. Vol. 312, no. 5774. P. 758-762. doi: 10.1126/science.1125572.
  24. Taube J. S. The head direction signal: Origins and sensory-motor integration // Annu. Rev. Neurosci. 2007. Vol. 30. P. 181-207. doi: 10.1146/annurev.neuro.29.051605.112854.
  25. Rolls E. T., Stringer S. M. Spatial view cells in the hippocampus, and their idiothetic update based on place and head direction // Neural Networks. 2005. Vol. 18, no. 9. P. 1229-1241. doi: 10.1016/j.neunet.2005.08.006.
  26. Rolls E. T, Xiang J.-Z. Spatial view cells in the primate hippocampus and memory recall // Rev. Neurosci. 2006. Vol. 17, no. 1-2. P. 175-200. doi: 10.1515/REVNEURO.2006.17.1-2.175.
  27. Цукерман В. Д., Харыбина З. С., Кулаков С. В. Математическая модель пространственного кодирования в гиппокампальной формации. II. Нейродинамические корреляты ментальных траекторий и проблема принятия решений // Математическая биология и биоинформатика. 2014. Т. 9, № 1. С. 216-256. doi: 10.17537/2014.9.216.
  28. Цукерман В. Д. К творческому познанию: креативные начала реляционных нейронных сетей с четным циклическим торможением // Труды VII Всероссийской конференции «Нелинейная динамика в когнитивных исследованиях-2021». Нижний Новгород, 20-24 сентября 2021. Нижний Новгород: ИПФ РАН, 2021. С. 186-189.
  29. Wang J., Narain D., Hosseini E. A., Jazayeri M. Flexible timing by temporal scaling of cortical responses // Nat. Neurosci. 2018. Vol. 21, no. 1. P. 102-110. doi: 10.1038/s41593-017-0028-6.
  30. Egger S. W., Remington E. D., Chang C.-J., Jazayeri M. Internal models of sensorimotor integration regulate cortical dynamics // Nat. Neurosci. 2019. Vol. 22, no. 11. P. 1871-1882. doi: 10.1038/s41593-019-0500-6.
  31. Raichle M. E. The brain’s default mode network // Annu. Rev. Neurosci. 2015. Vol. 38. P. 433-447. doi: 10.1146/annurev-neuro-071013-014030.
  32. Higgins C., Liu Y., Vidaurre D., Kurth-Nelson Z., Dolan R., Behrens T., Woolrich M. Replay bursts in humans coincide with activation of the default mode and parietal alpha networks // Neuron. 2021. Vol. 109, no. 5. P. 882-893. doi: 10.1016/j.neuron.2020.12.007.
  33. Peer M., Brunec I. K., Newcombe N. S., Epstein R. A. Structuring knowledge with cognitive maps and cognitive graphs // Trends Cogn. Sci. 2021. Vol. 25, no. 1. P. 37-54. doi: 10.1016/j.tics.2020.10.004.
  34. Schacter D. L., Addis D. R., Buckner R. L. Remembering the past to imagine the future: the prospective brain // Nat. Rev. Neurosci. 2007. Vol. 8, no. 9. P. 657-661. doi: 10.1038/nrn2213.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».