Selection of spatial modes in an ensemble of non-locally coupled chaotic maps

封面

如何引用文章

全文:

详细

Purpose of this work is to determine regularities of formation of spatial structures in an ensemble of chaotic systems with non-local diffusion couplings and to study how these structures depend on the wave response of the digital filter formed by the ensemble couplings structure. Methods. The study was carried out by numerical simulation of an ensemble of logistic maps, calculation of its typical oscillatory regimes and their spectral analysis. The network was considered as a digital filter with a frequency response depending on the coupling parameters. Correlation between the spatial spectra and the amplitude-frequency response of the coupling filter and the mutual coherence of oscillations when the coupling parameters change were considered. Results. The system of couplings between chaotic maps behaves like a wave filter with selective properties, allowing spatial modes with certain wavelengths to exist and suppressing others. The selection of spatial modes is based on the wave characteristic of the coupling filter, the type of which is determined by the radius and the magnitude of couplings. At strong coupling the wave characteristics for ensembles with local and non-local couplings are qualitatively different, therefore they demonstrate essencially different behavior. Discussion. Using spectral methods for dynamics analysis systems with complex network topologies seems to be a promising approach, especially for research of synchronization and multistability in ensembles of chaotic oscillators and maps. The found regularities generalize the results known for ensembles of maps with local couplings. They also can be applied to ensembles of self-sustained oscillators. 

作者简介

Aleksej Shabunin

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

参考

  1. Анищенко В. С., Постнов Д. Э., Сафонова М. А. Размерность и физические свойства хаотических аттракторов цепочки связанных генераторов // Письма в ЖТФ. 1985. Т. 11, № 24. С. 1505-1509.
  2. Анищенко В. С., Арансон И. С., Постнов Д. Э., Рабинович М. И. Пространственная синхронизация и развитие бифуркаций в цепочке связанных осцилляторов // Доклады Академии наук СССР. 1986. Т. 286, № 5. С. 1120-1124.
  3. Fujisaka H., Yamada T. Stability theory of synchronized motion in coupled-oscillator systems // Progress of Theoretical Physics. 1983. Vol. 69, no. 1. P. 32-47. doi: 10.1143/PTP.69.32.
  4. Yamada T., Fujisaka H. Stability theory of synchronized motion in coupled-oscillator systems. II: The mapping approach // Progress of Theoretical Physics. 1983. Vol. 70, no. 5, P. 1240-1248. doi: 10.1143/PTP.70.1240.
  5. Anishchenko V. S., Vadivasova T. E., Postnov D. E., Safonova M. A. Synchronization of chaos // International Journal of Bifurcation and Chaos. 1992. Vol. 2, no. 3. P. 633-644. doi: 10.1142/S0218127492000756.
  6. Heagy J. F., Carroll T. L., Pecora L. M. Synchronous chaos in coupled oscillator systems // Phys. Rev. E. 1994. Vol. 50, no. 3. P. 1874-1884. doi: 10.1103/PhysRevE.50.1874.
  7. Ren L., Ermentrout B. Phase locking in chains of multiple-coupled oscillators // Physica D. 2000. Vol. 143, no. 1-4. P. 56-73. doi: 10.1016/S0167-2789(00)00096-8.
  8. Шабунин А. В., Акопов А. А., Астахов В. В., Вадивасова Т. Е. Бегущие волны в дискретной ангармонической автоколебательной среде // Известия вузов. ПНД. 2005. Т. 13, № 4. C. 37-55. doi: 10.18500/0869-6632-2005-13-4-37-55.
  9. Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. Berlin: Springer, 1984. 158 p. doi: 10.1007/978-3-642-69689-3.
  10. Cross M. C., Hohenberg P. C. Pattern formation outside of equilibrium // Rev. Mod. Phys. 1993. Vol. 65, no. 3. P. 851-1112. doi: 10.1103/RevModPhys.65.851.
  11. Mosekilde E., Maistrenko Y., Postnov D. Chaotic Synchronization: Applications to Living Systems. Singapore: World Scientific, 2002. 440 p. doi: 10.1142/4845.
  12. Arecchi F. T., Meucci R., Puccioni G., Tredicce J. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser // Phys. Rev. Lett. 1982. Vol. 49, no. 17. P. 1217-1220. doi: 10.1103/PhysRevLett.49.1217.
  13. Астахов В. В., Безручко Б. П., Гуляев Ю. П., Селезнев Е. П. Мультистабильные состояния диссипативно связанных фейгенбаумовских систем // Письма в ЖТФ. 1989. Т. 15, № 3. C. 60-65.
  14. Астахов В. В., Безручко Б. П., Пудовочкин О. Б., Селезнев Е. П. Фазовая мультистабильность и установление колебаний в нелинейных системах с удвоением периода // Радиотехника и электроника. 1993. Т. 38, № 2. C. 291-295.
  15. Prengel F., Wacker A., Scholl E. Simple model for multistability and domain formation in semiconductor superlattices // Phys. Rev. B. 1994. Vol. 50, no. 3. P. 1705-1712. doi: 10.1103/PhysRevB.50.1705.
  16. Sun N. G., Tsironis G. P. Multistability of conductance in doped semiconductor superlattices // Phys. Rev. B. 1995. Vol. 51, no. 16. P. 11221-11224. doi: 10.1103/PhysRevB.51.11221.
  17. Foss J., Longtin A., Mensour B., Milton J. Multistability and delayed recurrent loops // Phys. Rev. Lett. 1996. Vol. 76, no. 4. P. 708-711. doi: 10.1103/PhysRevLett.76.708.
  18. Abrams D. M., Strogatz S. H. Chimera states for coupled oscillators // Phys. Rev. Lett. 2004. Vol. 93, no. 17. P. 174102. doi: 10.1103/PhysRevLett.93.174102.
  19. Omelchenko I., Maistrenko Y., Hovel P., Scholl E. Loss of coherence in dynamical networks: Spatial chaos and chimera states // Phys. Rev. Lett. 2011. Vol. 106, no. 23. P. 234102. doi: 10.1103/PhysRevLett.106.234102.
  20. Hagerstrom A. M., Murphy T. E., Roy R., Hovel P., Omelchenko I., Scholl E. Experimental observation of chimeras in coupled-map lattices // Nature Physics. 2012. Vol. 8, no. 9. P. 658-661. doi: 10.1038/nphys2372.
  21. Богомолов С. А., Стрелкова Г. И., Scholl E., Анищенко В. С. Амплитудные и фазовые химеры в ансамбле хаотических осцилляторов // Письма в ЖТФ. 2016. Т. 42, № 14. С. 103-110.
  22. Gopal R., Chandrasekar V. K., Venkatesan A., Lakshmanan M. Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling // Phys. Rev. E. 2014. Vol. 89, no. 5. P. 052914. doi: 10.1103/PhysRevE.89.052914.
  23. Shabunin A., Astakhov V., Kurths J. Quantitative analysis of chaotic synchronization by means of coherence // Phys. Rev. E. 2005. Vol. 72, no. 1. P. 016218. doi: 10.1103/PhysRevE.72.016218.
  24. Шабунин А. В. Мультистабильность периодических орбит в ансамбле отображений с дальнодействующими связями // Известия вузов. ПНД. 2018. Т. 26, № 2. C. 5-23. doi: 10.18500/0869-6632-2018-26-2-5-23.
  25. Shabunin A. Selective properties of diffusive couplings and their influence on spatiotemporal chaos // Chaos. 2021. Vol. 31, no. 7. P. 073132. doi: 10.1063/5.0054510.
  26. Kaneko K. Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermettency // Physica D. 1989. Vol. 34, no. 1-2. P. 1-41. doi: 10.1016/0167-2789(89)90227-3.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».