Application of joint singularity spectrum to analyze cooperative dynamics of complex systems

Cover Page

Cite item

Full Text

Abstract

Purpose of this work is to generalize the wavelet-transform modulus maxima method to the case of cooperative dynamics of interacting systems and to introduce the joint singularity spectrum into consideration. The research method is the wavelet-based multifractal formalism, the generalized version of which is used to quantitatively describe the effect of chaotic synchronization in the dynamics of model systems. Models of coupled Rossler systems and paired nephrons are considered. As a result of the studies carried out, the main changes in the joint singularity spectra were noted during the transition from synchronous to asynchronous oscillations in the first model and to the partial synchronization mode in the second model. Conclusion. Proposed approach can be used in studies of the cooperative dynamics of systems of various nature.

About the authors

German Aleksandrovich Guyo

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Aleksej Nikolaevich Pavlov

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Bendat JS, Piersol AG. Random Data: Analysis and Measurement Procedures. 4th edition. New Jersey: John Wiley & Sons; 2010. 640 p. doi: 10.1002/9781118032428.
  2. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes: The Art of Scientific Computing. 3rd edition. Cambridge: Cambridge University Press; 2007. 1256 p.
  3. Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A. 1986;33(2):1141–1151. DOI: 10. 1103/PhysRevA.33.1141.
  4. Frish U, Parisi G. On the singularity structure of fully developed turbulence. In: Ghil M, Benzi R, Parisi G, editors. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. New York: North-Holland; 1985. P. 84–88.
  5. Benzi R, Vulpiani A. Multifractal approach to fully developed turbulence. Rendiconti Lincei. Scienze Fisiche e Naturali. 2022;33(3):471–477. doi: 10.1007/s12210-022-01078-5.
  6. Muzy JF, Bacry E, Arneodo A. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett. 1991;67(25):3515–3518. DOI: 10.1103/ PhysRevLett.67.3515.
  7. Muzy JF, Bacry E, Arneodo A. The multifractal formalism revisited with wavelets. International Journal of Bifurcation and Chaos. 1994;4(2):245–302. doi: 10.1142/S0218127494000204.
  8. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications. 2002;316(1–4):87–114. doi: 10.1016/S0378-4371(02)01383-3.
  9. Ihlen EAF. Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers in Physiology. 2012;3:141. doi: 10.3389/fphys.2012.00141.
  10. Meneveau C, Sreenivasan KR, Kailasnath P, Fan MS. Joint multifractal measures: Theory and applications to turbulence. Phys. Rev. A. 1990;41(2):894–913. doi: 10.1103/PhysRevA.41.894.
  11. Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE. Multifractality in human heartbeat dynamics. Nature. 1999;399(6735):461–465. DOI: 10.1038/ 20924.
  12. Pavlov AN, Sosnovtseva OV, Ziganshin AR, Holstein-Rathlou NH, Mosekilde E. Multiscality in the dynamics of coupled chaotic systems. Physica A: Statistical Mechanics and its Applications. 2002;316(1–4):233–249. doi: 10.1016/S0378-4371(02)01202-5.
  13. Pavlov AN, Pavlova ON, Abdurashitov AS, Sindeeva OA, Semyachkina-Glushkovskaya OV, Kurths J. Characterizing scaling properties of complex signals with missed data segments using the multifractal analysis. Chaos. 2018;28(1):013124. doi: 10.1063/1.5009438.
  14. Addison PS. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. 2nd edition. Boca Raton: CRC Press; 2016. 464 p. doi: 10.1201/9781315372556.
  15. Barfred M, Mosekilde E, Holstein-Rathlou NH. Bifurcation analysis of nephron pressure and flow regulation. Chaos. 1996;6(3):280–287. doi: 10.1063/1.166175.
  16. Postnov DE, Sosnovtseva OV, Mosekilde E, Holstein-Rathlou NH. Cooperative phase dynamics in coupled nephrons. International Journal of Modern Physics B. 2001;15(23):3079–3098. doi: 10.1142/S0217979201007233.
  17. Sosnovtseva OV, Pavlov AN, Mosekilde E, Yip KP, Holstein-Rathlou NH, Marsh DJ. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats. Am. J. Physiol. Renal. Physiol. 2007;293(5):F1545–F1555. doi: 10.1152/ajprenal.00054.2007.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».