Effective algorithms for solving functional equations with superposition on the example of the Feigenbaum equation

封面

如何引用文章

全文:

详细

Purpose. New algorithms were consider for functional equations solving using the Feigenbaum equation as an example. This equation is of great interest in the theory of deterministic chaos and is a good illustrative example in the class of functional equations with superposition. Methods. The article proposes three new effective methods for solving functional equations — the method of successive approximations, the method of successive approximations using the fast Fourier transform and the numerical-analytical method using a small parameter. Results. Three new methods for solving functional equations were presented, considered on the example of the Feigenbaum equation. For each of them, the features of their application were investigated, as well as the complexity of the resulting algorithms was estimated. The methods previously used by researchers to solve functional equations are compared with those described in this article. In the description of the latter, the numerical-analytical method, several coefficients of expansions of the universal Feigenbaum constants were written out. Conclusion. The obtained algorithms, based on simple iteration methods, allow solving functional equations with superposition without the need to reverse the Jacobi matrix. This feature greatly simplifies the use of computer memory and gives a gain in the operating time of the algorithms in question, compared with previously used ones. Also, the latter, numerically-analytical method made it possible to obtain sequentially the coefficients of expansions of the universal Feigenbaum constants, which in fact can be an analytical representation of these constants

作者简介

Andrey Polunovskii

A. A. Harkevich Institute of Information Transmission Problems of the RAS; Kurchatov Institute

Bolshoy Karetny per. 19, build.1, Moscow

参考

  1. Шустер Г. Детерминированный хаос. М.: Мир, 1988. 253 c.
  2. Фейгенбаум М. Универсальность в поведении нелинейных систем // Успехи физических наук. 1983. Т. 141, № 2. С. 343–374. doi: 10.3367/UFNr.0141.198310e.0343.
  3. Feigcnbaum M. J. The universal metric properties of nonlinear transformations // Journal of Statistical Physics. 1979. Vol. 21, no. 6. P. 669–706. doi: 10.1007/BF01107909.
  4. Feigenbaum M. J. Quantitative universality for a class of nonlinear transformations // Journal of Statistical Physics. 1978. Vol. 19, no. 1. P. 25–52. doi: 10.1007/BF01020332.
  5. Briggs K. How to calculate the Feigenbaum constants on your PC // Australian Mathematical Society Gazette. 1989. Vol. 16. P. 89–92.
  6. Broadhurst D. Feigenbaum constants to 1018 decimal places [Electronic resource]. 22 March 1999. Available from: http://www.plouffe.fr/simon/constants/feigenbaum.txt.
  7. Briggs K. A precise calculation of the Feigenbaum constants // Mathematics of Computation. 1991. Vol. 57, no. 195. P. 435–439. doi: 10.2307/2938684.
  8. Molteni A. An efficient method for the computation of the Feigenbaum constants to high precision [Electronic resource] // arXiv:1602.02357. arXiv Preprint, 2016. Available from: https://arxiv.org/ abs/1602.02357.
  9. Кузнецов C. Динамический хаос. 2-е изд. М.: Физматлит, 2006. 356 с.
  10. Faa di Bruno F. Sullo sviluppo delle funzioni // Annali di Scienze Matematiche e Fisiche. 1855. Vol. 6. P. 479–480.
  11. Bell E. T. Partition polynomials // Annals of Mathematics. 1927. Vol. 29, no. 1–4. P. 38–46. doi: 10.2307/1967979.
  12. Heideman M. T., Johnson D., Burrus C. Gauss and the history of the fast Fourier transform // IEEE ASSP Magazine. 1984. Vol. 1, no. 4. P. 14–21. doi: 10.1109/MASSP.1984.1162257.
  13. Полуновский А. А. Временные разложения решений уравнений математической физики // Дифференциальные уравнения. 2020. Т. 56, № 3. С. 393–402. doi: 10.1134/S0374064120030103.
  14. Ван-Дайк М. Методы возмущений в механике жидкости. М.: Мир, 1967. 296 с.
  15. Бейкер Дж., Грейвс-Моррис П. Аппроксимации Паде. М: Мир, 1986. 502 с.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».