Application of artificial intelligence methods in medicine
- Autores: Orlov Y.N.1
-
Afiliações:
- Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
- Edição: Nº 8 (2025)
- Páginas: 30-37
- Seção: С КАФЕДРЫ ПРЕЗИДИУМА РАН
- URL: https://ogarev-online.ru/0869-5873/article/view/305406
- DOI: https://doi.org/10.31857/S0869587325080036
- EDN: https://elibrary.ru/dtdskq
- ID: 305406
Citar
Resumo
The prospects for the development of artificial intelligence technologies in the field of medicine are considered. The analysis of trends in the development of artificial intelligence in general and specific issues, such as the analysis and classification of big data, predicting disruption and creating a reliable report using a medical decision support system. The advantages and limitations of machine learning methods in comparison with human expertise are described. The types of tasks for the prospective application of artificial intelligence methods are noted, such as analyzing biometric data flows to identify the patient’s condition and modeling the interaction of several drugs.
Palavras-chave
Sobre autores
Yu. Orlov
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: ov3159f@yandex.ru
Moscow, Russia
Bibliografia
- Feixiong Cheng, Zhongming Zhao. Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties // J. Medicine Information Association, 2014, no. 21, pp. 278–286.
- Tengfei Lyu, Jianliang Gao, Ling Tian, Zhao Li et al. A Multimodal Deep Neural Network for Predicting Drug-Drug Interaction Events // Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), pp. 3536–3542.
- Xiang Yue, Zhen Wang, Jingong Huang et al. Graph embedding on biomedical networks: methods, applications and evaluations // Bioinformatics, 2020, no. 36(4), pp. 1241–1251.
- Xu Chu, Yang Lin, Yasha Wang et al. A multi-task semi-supervised learning framework for drug-drug interaction prediction. // Proceedings of the International Joint Conference on Artificial Intelligence, 2019, pp. 4518–4524.
- Farkas D., Shader R.I., von Moltke L.L., Greenblatt D.J. Mechanisms and consequences of drug-drug interactions. // In: Gad SC, ed. Preclinical Development Handbook: ADME and Biopharmaceutical Properties. Philadelphia: Wiley, 2021.
- Марцевич С.Ю., Лукина Ю.В., Драпкина О.М. Основные принципы комбинированной медикаментозной терапии – фокус на межлекарственное взаимодействие // Кардиоваскулярная терапия и профилактика. 2021. № 20(7). С. 3031. Martsevich S.Yu., Lukina Yu.V., Drapkina O.M. Basic principles of combination drug therapy – focus on drug interactions // Cardiovascular therapy and prevention. 2021, no. 20(7), p. 3031. (In Russ.)
- Huimin Luo, Weijie Yin, Jianlin Wang et al. Drug-drug interactions prediction based on deep learning and knowledge graph: A review // iScience 27, 2024, March, 109148.
- Yifan Deng, Xinran Xu, Yang Qiu et al. A multimodal deep learning framework for predicting drug–drug interaction events // Bioinformatics. 2020, no. 36(15), pp. 4316–4322.
- Ryu J.Y. et al. (2018) Deep learning improves prediction of drug–drug and drug–food interactions // Proc. Natl. Acad. Sci. USA. 2018, no. 115, pp. E4304–E4311.
- Орлов Ю.Н., Сивакова Т.В., Шимановский Н.Л. Ранговая модель оценки рисков полифармакотерапии // Математическое моделирование. 2025. Т. 37. № 2. С. 99–110. Orlov Yu.N., Sivakova T.V., Shimanovsky N.L. Rank model for assessing the risks of polypharmacotherapy // Mathematical modeling. 2025, vol. 37, no. 2, pp. 99–110. (In Russ.)
- Кислицын А.А., Козлова А.Б., Корсакова М.Б., Орлов Ю.Н. Индикатор разладки для нестационарных случайных процессов // Доклады РАН. Cер. Математическая. 2019. Т. 484. № 4. С. 393–396. Kislitsyn A.A., Kozlova A.B., Korsakova M.B., Orlov Yu.N. Disorder indicator for non-stationary random processes // Reports of the Russian Academy of Sciences. Series: Mathematical. 2019, vol. 484, no. 4, pp. 393–396. (In Russ.)
Arquivos suplementares
