THE METHOD OF INVESTIGATING TEXTURE AND DOMAIN STRUCTURE OF ELECTRICAL ANISOTROPIC STEEL BY MEANS OF ELECTRON MICROSCOPY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The current study deals with the methodics of investigating crystallographic texture, grain structure and domain structure of high-permeability electrical anisotropic steel after secondary recrystallization and the results obtained by this methodics by EBSD measurement. The proposed methodics allows to observe the domain structure of electrical anisotropic steel without introducing mechanical stresses during sample prepearation. This work also describes the new formula for calculation of magnetic induction based on the weighted average values of Goss deviation angles and the standart deviations of these values.

About the authors

A. S Roldugina

Novolipetsk Steel

Email: rolduginaas@gmail.com
Lipetsk

M. V Ryazanov

Novolipetsk Steel

Lipetsk

V. I Parakhin

Bardin Central Research Institute of Ferrous Metals

Moscow

References

  1. Bernier, N. EBSD study of angular deviations from the Goss component in grain-oriented electrical steels / N. Bernier, E. Leunis, C. Furtado, T. Putte, G. Ban // Micron. 2013. V.54-55. P.43–51.
  2. Dragoshanskii, Yu.N. Formation of magnetic properties of electrical steel / Yu.N. Dragoshanskii, V.I. Pudov // Diagnostics, Resource and Mechanics of Mater. Structures. 2020. Is.1. P.57–72.
  3. Губернаторов, В.В. Явление гофрирования и формирование структуры и текстуры в металлических материалах при деформации и рекристаллизации : в 3 ч. Ч.3. Новые пути получения высококачественной анизотропной электротехнической стали / В.В. Губернаторов, Т.С. Сычева, Ю.Н. Драгошанский, В.С. Матвеева // Физическая мезомеханика. 2003. V.6. С.107 (6 с.).
  4. V.V.Gubernatorov, T. S. Sycheva, Yu.N.Dragoshanskii, V. S. Matveeva. «The phenomenon of corrugation and structure and texture formation in metallic materials during deformation and recrystallization : 3. New methods of producing high-quality anisotropic electrical steel» // Physical Mesomechanics. 2003. V.6. P.107 (6 p.).
  5. Lee, S. Statistical analysis of misorientation to goss orientation of highly grain-oriented silicon steel / S. Lee, S. Kim // J. Magn. Magn. Mater. 2022. V.560. Art.169563.
  6. Shilling, J. Magnetic properties and domain structure in grain-oriented 3% Si-Fe / J. Shilling, G. Houze // IEEE Trans. Magn. 1974. V.10. Is.2. P.195–223.
  7. Swift, W.M. Relationship between statistical distribution of grain orientations and B10 in polycrystalline (110) [001] 3% Si‐Fe sheet / W.M. Swift, W.T. Reynolds, J.W. Shilling // AIP Conf. Proc. 1973. V.10. Is.1. P.976–980.
  8. Birsan, M. Anisotropy of permeability at 10 Oe in textured soft magnetic materials / M. Birsan, J.A. Szpunar // J. Appl. Phys. 1996. V.79. Is.11. P.8588–8592.
  9. Foster, K. Effect of directional orientation on the magnetic properties of cube-oriented magnetic sheets / K. Foster, J.J. Kramer // J. Appl. Phys. 1960. V.31. Is.5. P.233, 234.
  10. McCarty, M. Texture – Electrical‐property correlations in oriented silicon steel / M. McCarty, G.L. Houze, F.A. Malagari // J. Appl. Phys. 1967. V.38. Is.3. P.1096–1098.
  11. Nadoum, A. On the correlation between magnetic domain and crystallographic grain orientation in grain oriented electrical steels / A. Nadoum, F. Robinson, S. Birosca // J. Magn. Magn. Mater. 2019. V.494. Art.165772.
  12. Gallaugher, M. Magnetic domain structure and crystallographic orientation of electrical steels revealed by a forescatter detector and electron backscatter diffraction / M. Gallaugher, N. Brodusch, R. Gauvin, R. Chromik // Ultramicroscopy. 2014. V.142. P.40–49.
  13. Inami, T. Observation of buried magnetic domains in grain-oriented electrical steel / T. Inami, K. Sugawara, T. Nakada, Y. Sakaguchi, S.Takahashi // IEEE. Trans. Magn. 2022. V.59. Is.3. P.1–6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).