Существование последовательностей, удовлетворяющих рекуррентным соотношениям билинейного типа

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматриваются последовательности $\left\{A_n\right\}_{n=-\infty}^{+\infty}$ элементов произвольного поля $\mathbb{F}$, удовлетворяющие разложениям вида $A_{m+n} A_{m-n}=a_1(m) b_1(n)+a_2(m) b_2(n)$, $A_{m+n+1} A_{m-n}=\tilde a_1(m) \tilde b_1(n)+\tilde a_2(m) \tilde b_2(n)$, где $a_1,a_2,b_1,b_2\colon \mathbb{Z}\to\mathbb{F}$. Доказываются результаты о существовании и единственности таких последовательностей. Полученные результаты используются для построения аналогов криптографических алгоритмов Диффи - Хеллмана и Эль-Гамаля. Задача дискретного логарифмирования ставится в группе $(S,+)$, где множество $S$ состоит из четверок $S(n)=(A_{n-1},A_n, A_{n+1}, A_{n+2})$, $n\in\mathbb{Z}$, а $S(n)+S(m)=S(n+m)$.

Об авторах

Андрей Анатольевич Илларионов

Национальный исследовательский университет “ Высшая школа экономики”;Хабаровское отделение Института прикладной математики ДВО РАН

Email: illar_a@list.ru
Москва, Россия;Хабаровск, Россия

Список литературы

  1. Авдеева М.О., Быковский В.А. Гиперэллиптические системы последовательностей и функций // Дальневост. матем. журн. 2016. Т. 16. № 2. С. 115-122. https://www.mathnet.ru/dvmg326
  2. Илларионов А.А. Гиперэллиптические системы последовательностей ранга 4 // Матем. сб. 2019. Т. 210. № 9. С. 59-88. https://doi.org/10.4213/sm9050
  3. Robinson R.M. Periodicity of Somos Sequences // Proc. Amer. Math. Soc. 1992. V. 116. № 3. P. 613-619. https://doi.org/10.2307/2159426
  4. Shipsey R. Elliptic Divisibility Sequences. PhD Thesis. Goldsmiths College, Univ. London, 2000.
  5. Fomin S., Zelevinsky A. The Laurent Phenomenon // Adv. Appl. Math. 2002. V. 28. № 2. P. 119-144. https://doi.org/10.1006/aama.2001.0770
  6. Swart C.S. Elliptic Curves and Related Sequences. PhD Thesis. Royal Holloway, Univ. London, 2003.
  7. Hone A.N.W. Elliptic Curves and Quadratic Recurrence Sequences // Bull. Lond. Math. Soc. 2005. V. 37. № 2. P. 161-171. https://doi.org/10.1112/S0024609304004163
  8. van der Poorten A.J., Swart C.S. Recurrence Relations for Elliptic Sequences: Every Somos 4 Is a Somos k // Bull. Lond. Math. Soc. 2006. V. 38. № 4. P. 546-554. https://doi.org/10.1112/S0024609306018534
  9. Hone A.N.W. Sigma Function Solution of the Initial Value Problem for Somos 5 Sequences // Trans. Amer. Math. Soc. 2007. V. 359. № 10. P. 5019-5034. https://doi.org/10.1090/S0002-9947-07-04215-8
  10. Hone A.N.W., Swart C.Integrality and the Laurent Phenomenon for Somos 4 and Somos 5 Sequences // Math. Proc. Cambridge Philos. Soc. 2008. V. 145. № 1. P. 65-85. https://doi.org/10.1017/S030500410800114X
  11. Hone A.N.W. Analytic Solutions and Integrability for Bilinear Recurrences of Order Six // Appl. Anal. 2010. V. 89. № 4. P. 473-492. https://doi.org/10.1080/00036810903329977
  12. Fedorov Yu.N., Hone A.N.W. Sigma-Function Solution to the General Somos-6 Recurrence via Hyperelliptic Prym Varieties // J. Integrable Syst. 2016. V. 1. № 1. Art. xyw012 (34 pp.). https://doi.org/10.1093/integr/xyw012
  13. Быковский В.А., Устинов А.В. Сомос-4 и эллиптические системы последовательностей // ДАН. 2016. Т. 471. № 1. С. 7-10. https://doi.org/10.7868/S0869565216310030
  14. Shor P.W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring // Proc. 35th Annu. Symp. on Foundations of Computer Science. Santa Fe, NM, USA. Nov. 20-22, 1994. P. 124-134. https://doi.org/10.1109/SFCS.1994.365700
  15. Илларионов А.А. Асимметричные криптосистемы и гиперэллиптические последовательности // Дальневост. матем. журн. 2019. Т. 19. № 2. С. 185-196. https://www.mathnet.ru/dvmg407
  16. Устинов А.В. Элементарный подход к изучению последовательностей Сомоса // Тр. МИАН. 2019. Т. 305. С. 330-343. https://doi.org/10.4213/tm3990
  17. Ward M. Memoir on Elliptic Divisibility Sequences // Amer. J. Math. 1948. V. 70. № 1. P. 31-74. https://doi.org/10.2307/2371930

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».