Перепараметризованные тесты максимального правдоподобия для обнаружения разреженных векторов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается задача обнаружения разреженного вектора большой размерности на фоне белого гауссовского шума. Предполагается, что неизвестный вектор может иметь только p ненулевых компонент, положение и величина которых неизвестны, а их число, с одной стороны, велико, но с другой - мало по сравнению с его размерностью. Тест максимального правдоподобия (МП) в этой задаче имеет простой вид и, естественно, зависит от p. В статье изучаются статистические свойства перепараметризованных тестов МП, т.е. тестов, построенных на основе предположения, что число ненулевых компонент вектора равно q (q > p), в ситуации, когда на самом деле вектор имеет всего лишь p ненулевых компонент. Показывается, что в некоторых случаях перепараметризованные тесты могут быть лучше стандартных тестов МП.

Об авторах

Георгий Ксенофонтович Голубев

Институт проблем передачи информации им. А.А. Харкевича РАН

Email: golubev.yuri@gmail.com
Москва, Россия

Список литературы

  1. Zhang C., Bengio S., Hardt M., Recht B., Vinyals O. Understanding Deep Learning (Still) Requires Rethinking Generalization // Commun. ACM. 2021. V. 64. № 3. P. 107-115. https://doi.org/10.1145/3446776
  2. Belkin M. Fit without Fear: Remarkable Mathematical Phenomena of Deep Learning through the Prism of Interpolation // Acta Numer. 2021. V. 30. P. 203-248. https://doi.org/10.1017/S0962492921000039
  3. Belkin M., Hsu D., Xu J. Two Models of Double Descent for Weak Features // SIAM J. Math. Data Sci. 2020. V. 2. № 4. P. 1167-1180. https://doi.org/10.1137/20M1336072
  4. Dar Y., Muthukumar V., Baraniuk R.G. A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning, https://arxiv.org/abs/2109.02355 [stat.ML], 2021
  5. Добрушин Р.Л. Одна статистическая задача теории обнаружения сигнала на фоне шума в многоканальной системе, приводящая к устойчивым законам распределения // Теория вероятн. и ее примен. 1958. Т. 3. № 2. С. 173-185. https://www.mathnet.ru/rus/tvp4928
  6. Бурнашев М.В., Бегматов И.А. Об одной задаче обнаружения сигнала, приводящей к устойчивым распределениям // Теория вероятн. и ее примен. 1990. Т. 35. № 3. С. 557-560. https://www.mathnet.ru/rus/tvp1261
  7. Ingster Yu.I., Suslina I.A. Nonparametric Goodness-of-Fit Testing Under Gaussian Models // Lect. Notes Statist. V. 169. New York: Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21580-8
  8. Bonferroni C.E. Teoria statistica delle classi e calcolo delle probabilità // Pubbl. del R. Ist. Super. di Sci. Econ. e Commer. di Firenze. V. 8. Firenze: Seeber, 1936
  9. Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing //j. Roy. Statist. Soc. Ser. B. 1995. V. 57. № 1. P. 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  10. Benjamini Y. Simultaneous and Selective Inference: Current Successes and Future Challenges // Biom. J. 2010. V. 52. № 6. P. 708-721. https://doi.org/10.1002/bimj.200900299
  11. Donoho D., Jin J. Higher Criticism Thresholding: Optimal Feature Selection When Useful Features are Rare and Weak // Proc. Natl. Acad. Sci. U.S.A. 2008. V. 105. № 39. P. 14790-14795. https://doi.org/10.1073/pnas.0807471105
  12. Anderson T.W. The Integral of a Symmetric Unimodal Function over a Symmetric Convex Set and Some Probability Inequalities // Proc. Amer. Math. Soc. 1955. V. 6. № 2. P. 170-176. https://doi.org/10.1090/S0002-9939-1955-0069229-1
  13. Ибрагимов И.А., Хасьминский Р.З. Асимптотическая теория оценивания. М.: Наука, 1 979
  14. Pyke R. Spacings // J. Roy. Statist. Soc. Ser. B. 1965. V. 27. № 3. P. 395-436; 37-449 (discussion). https://doi.org/10.1111/j.2517-6161.1965.tb00602.x; https://doi.org/10.1111/j.2517-6161.1965.tb00603.x
  15. Федорюк М.В. Асимптотика: интегралы и ряды. М.: Наука, 1987

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».