FLUOROPOLYMER FOR MICROELECTRONICS PRODUCTION (REVIEW)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A defining characteristic of microelectronic manufacturing is its exceptionally high standards for purity. These requirements apply to raw materials, final products, technological processes, equipment, and facilities. Such conditions are often achieved using aggressive reagents, necessitating equipment and tooling made from chemically resistant materials. Fluoropolymers (FPs) are a key class of materials that meet this need, with products made from them being integral to numerous microelectronic processes. For a long time, the necessary fluoropolymer products were imported. However, current sanctions have created an urgent need to establish their domestic production within the Russian Federation. Consequently, a thorough analysis of Russia’s fluoropolymer research and manufacturing capabilities is essential to address this challenge. The success of this endeavor will depend significantly on effective collaboration and mutual understanding between specialists in microelectronics and fluoropolymer materials – a central focus of this review. Particular attention is paid to products used for filtering aggressive reagents, purifying water and air, sampling and storing specimens, and conducting reactions with high-purity chemicals.

Авторлар туралы

E. Bolbasov

Tomsk Polytechnic University; V.E. Zuev Institute of Atmospheric Optics RAS

Email: floorplast@tpu.ru
Tomsk, Russia; Tomsk, Russia

V. Buznik

Tomsk State University; Kurnakov Institute of General and Inorganic Chemistry RAS

Email: buznikv@list.ru
Tomsk, Russia; Moscow, Russia

D. Varlamov

Molecular Electronics Research Institute

Zelenograd, Russia

A. Vorobiev

Tomsk Polytechnic University

Tomsk, Russia

G. Dubinenko

Tomsk Polytechnic University

Tomsk, Russia

A. Eremchuk

Molecular Electronics Research Institute

Zelenograd, Russia

M. Trusova

Tomsk Polytechnic University

Tomsk, Russia

Әдебиет тізімі

  1. Maier G. Polymers for microelectronics // Materials Today. 2001. V. 4. P. 22–33. https://doi.org/10.1016/S1369-7021(01)80253-4
  2. Maier G. Low dielectric constant polymers for microelectronics // Prog Polym Sci. 2001. V. 26. P. 3–65.. https://doi.org/10.1016/S0079-6700(00)00043-5
  3. Maier G., Banerjee S., Haußmann J., Sezi R. High-Temperature Polymers for Advanced Microelectronics // High Performance Polymers. 2001. V. 13. No 2. https://doi.org/10.1088/0954-0083/13/2/310
  4. Loginov B.A., Villemson A.L., Buznik V.M. Rossiiskie ftorpolimery: istoriia, tekhnologii, perspektivy [Russian fluoropolymers: history, technology, prospects. 2013. https://www.studmed.ru/loginov-b-a-villemson-a-l-buznik-v-m-rossiyskie-ftorpolimery-istoriya-tehnologii-perspektivy_8923a195a0d.html (accessed July 4, 2023).
  5. Buknik V.M., Khokhlov A.R. Ftorpolimernye materialy. Sovremennoe sostoyanie i perspektivy [Fluoropolymer materials. Current state and prospects] // Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D. I. Mendeleeva [Journal of the Russian Chemical Society named after D. I. Mendeleev]. 2008. V. 52. No 5. P. 5–6.
  6. Buznik V.M. Ftorpolimernye materialy [Fluoropolymer materials] // Izd-vo NTL. 2017.
  7. Panshin Yu.A., Malkevich S.G., Dunaevskaya Ts.S. Ftoroplasty [Fluoroplastics] // Khimiya. 1978.
  8. Nudel’man N. Ftorkachuki: osnovy, pererabotka, primenenie [Fluoroe lastomers: fundamentals, processing, application] // OOO “PIF RIAS”. 2007.
  9. K-Mac Plastics. Chemical resistance of plastic materials. (n. d.). http://k-mac-plastics.com/chemical-large.htm (accessed July 4, 2023).
  10. UralActiv. Sverkhvysokomolekulyarnyy polietilen PE‑1000* [Ultra-high molecular weight polyethylene PE‑1000]. https://uralactiv.ru/listovoy-plastik/sverhvysokomolekulyarnyy-polietilen-svmpe/sverhvysokomolekulyarnyy-polietilen-pe‑1000 (accessed July 4, 2023).
  11. Microspec Corporation. Polysulfone (PSU). from https://www.microspecorporation.com/materials/engineering-resins/polysulfone// (accessed July 4, 2023).
  12. Sterling Plastics, Inc. Polysulfone (PSU). (n. d.). http://sterlingplasticsinc.com/materials/polysulfone-psu/ (accessed July 4, 2023).
  13. Vitahim. Полисульфон ПСФ 150 [Polysulfone PSF 150]. (n. d.). https://vitahim.ru/catalog/polimernye_materialy/polisulfon/polisulfon_psf_150_1/ (accessed July 4, 2023).
  14. Halopolymer. Традиционные фторполимеры [Traditional fluoropolymers]. (n. d.). https://halopolymer.ru/product/ftorpolimery/traditsionnye-ftorpolimery/ (accessed July 4, 2023).
  15. Molded. Overview of materials for Polytetrafluoroethylene (PTFE) // MatWeb. (n. d.) https://www.matweb.com/search/datasheet_print.aspx?matguid=4d14eac958e5401a8fd152e1261b6843 (accessed July 4, 2023).
  16. Chemours. Teflon™ FEP 100 Fluoropolymer Resin. // MatWeb. (n. d.). https://www.matweb.com/search/datasheet.aspx?matguid=3dbaaa8dbb114c57996acd6738a7efc1&ckck=1 (accessed July 4, 2023).
  17. Greer A.I.M., Vasiev I., Della-Rosa B., Gadegaard N. Fluorinated ethylene–propylene: a complementary alternative to PDMS for nanoimprint stamps // Nanotechnology. 2016. V. 27. P. 155301. https://doi.org/10.1088/0957-4484/27/15/155301
  18. Halopolymer. Ф‑4МБ (FEP), (n. d.). https://halopolymer.ru/product/ftorpolimery/spetsialnye-ftorpolimery/osnovnye/f‑4mb-fep/ (accessed July 4, 2023).
  19. AZoM. Ethylene-Chlorotrifluoroethylene – ECTFE. (n. d.). https://www.azom.com/article.aspx? ArticleID=391 (accessed July 4, 2023).
  20. Curbell Plastics. ECTFE Halar® plastic | ECTFE material properties, chemical resistance, & compatibility. (n. d.). https://www.curbellplastics.com/materials/plastics/ectfe/ (accessed July 4, 2023).
  21. Halopolymer. Ф‑2М (PVDF). (n. d.). https://halopolymer.ru/product/ftorpolimery/spetsialnye-ftorpolimery/osnovnye/f‑2m-pvdf/ (accessed July 4, 2023).
  22. Saxena P., Shukla P. A comprehensive review on fundamental properties and applications of polyvinylidene fluoride (PVDF) // Adv Compos Hybrid Mater. 2021. V. 4. P. 8–26. https://doi.org/10.1007/s42114-021-00217-0
  23. Fluorotherm. PFA tubing | Properties. (n. d.). https://www.fluorotherm.com/technical-information/materials-overview/pfa-properties/ (accessed July 4, 2023).
  24. Curbell Plastics. PFA plastic & properties | Flexible fluoropolymer. (n. d.). https://www.curbellplastics.com/materials/plastics/pfa/ (accessed July 4, 2023).
  25. Ebnesajjad S. Chemical Properties of Fluoropolymers-Polytetrafluoroethylene and Polychlorotrifluoroethylene // Fluoroplastics. 2015. P. 382–395. https://doi.org/10.1016/B978-1-4557-3199-2.00017-3
  26. 3D With Us. ABS acetone vapour smoothing – Filament review // 3D printing materials. (n. d.). https://3dwithus.com/abs-acetone-smoothing-filament-review (accessed July 10, 2023).
  27. Vock S., Klöden B., Kirchner A., Weißgärber T., Kieback B. Powders for powder bed fusion: a review // Progress in Additive Manufacturing. 2019. V. 4. P. 383–397. https://doi.org/10.1007/s40964-019-00078-6
  28. Schmid M., Amado A., Wegener K. Polymer powders for selective laser sintering (SLS) // AIP Conf. Proc. 2015. P. 160009. https://doi.org/10.1063/1.4918516.
  29. Han W., Kong L., Xu M. Advances in selective laser sintering of polymers // Int. J. Extrem. Manuf. 2022. V. 4. https://doi.org/10.1088/2631-7990/ac9096
  30. Campanelli C., Wildman R.D., Tuck C.J. Processing of High-Performance Fluoropolymers by Laser Sintering // Conf. Annual International Solid Freeform Fabrication Symposium. 2018. https://doi.org/10.26153/TSW/17153
  31. Brito Guaricela J.L., Ahrens C.H., Oliveira Barra G.M., Merlini C. Evaluation of poly(vinylidene fluoride)/carbon black composites, manufactured by selective laser sintering // Polym. Compos. 2021. V. 42. P. 2457–2468. https://doi.org/10.1002/pc.25991.
  32. Song S., Li Y., Wang Q., Zhang C. Facile preparation of high loading filled PVDF/BaTiO3 piezoelectric composites for selective laser sintering 3D printing // RSC Adv. 2021. V. 11. P. 37923–37931. https://doi.org/10.1039/D1RA06915B
  33. Song S., Li Y., Wang Q., Zhang C. Boosting piezoelectric performance with a new selective laser sintering 3D printable PVDF/graphene nanocomposite // Compos. Part. A Appl. Sci. Manuf. 2021. V. 147. P. 106452. https://doi.org/10.1016/j.compositesa.2021.106452
  34. 3M. Developmental product: A new dimension of opportunity. 3D printing with 3M™ Dyneon™ fluoropolymers. (n. d.) https://www.3m.com/3M/en_US/fluoropolymers-us/technologies/3d-printing/ (accessed July 10, 2023).
  35. Yao M., Ouyang X., Wu J., Zhang A.P., Tam H.-Y., Wai P.K.A. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams // Sensors. 2018. V. 18. No 6. P. 1825. https://doi.org/10.3390/s18061825
  36. Kotz F., Risch P., Helmer D., Rapp B. Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices // Micromachine. 2018. V. 9. P. 115. https://doi.org/10.3390/mi9030115
  37. Lee J.N. Solvent-resistant perfluoropolyether (PFPE) microfluidic devices // California Institute of Technology. 2002. https://thesis.library.caltech.edu/4796/6/05_Chapter_5.pdf (accessed July 9, 2023).
  38. Akimchenko I.O., Dubinenko G.E., Rutkowski S., Tverdokhlebov S.I., Vorobyev A.O., Bouznik V.M., Bolbasov E.N. One-step production of 3D printed ferroelectric polymer forms using fused deposition modeling // Appl. Phys. Lett. 2021. V. 119. https://doi.org/10.1063/5.0070365/40498
  39. Vorob’ev A.O., Kul’bakin D.E., Chistyakov S.G., Mitrichenko A.D., Dubinenko G.E., Akimchenko I.O., Plotnikov E.V., Gogolev A.S., Choinzonov E.L., Buznik V.M., Bol’basov E.N. Individual 3D-Printed Implants Made from a Copolymer of Vinylidene Fluoride with Tetrafluoroethylene: Studies of the Effects of Steam Sterilization on Structure and Toxicity // Biomed. Eng. 2023. V. 57. P. 52–56. https://doi.org/10.1007/S10527-023-10266-Y/METRICS
  40. Marandi M., Tarbutton J. Additive manufacturing of singleand double-layer piezoelectric PVDF-TrFE copolymer sensors // Procedia. Manuf. 2019. V. 34. P. 666–671. https://doi.org/10.1016/J.PROMFG.2019.06.194
  41. Akimchenko I.O., Dubinenko G.E., Rutkowski S., Tverdokhlebov S.I., Vorobyev A.O., Bouznik V.M., Bolbasov E.N. One-step production of 3D printed ferroelectric polymer forms using fused deposition modeling // Appl. Phys. Lett. 2021. V. 119. https://doi.org/10.1063/5.0070365/40498
  42. Vorob’ev A.O., Kul’bakin D.E., Chistyakov S.G., Mitrichenko A.D., Dubinenko G.E., Akimchenko I.O., Plotnikov E.V., Gogolev A.S., Choizhono E.L., Buznik V.M., Bol’basov E. Individual’nye implantaty, izgotovlennye metodom 3D-pechati iz sopolimera vinilidenftorida s tetraftorėtilenom: issledovanie vliyaniya parovoy sterilizatsii na strukturu i toksichnost’ [Individual implants manufactured by 3D printing from vinylidene fluoride-tetrafluoroethylene copolymer: a study of the effect of steam sterilization on structure and toxicity] // Meditsinskaya Tekhnika. 2023. V. 4. P. 40–43. http://www.mtjournal.ru/archive/2023/meditsinskaya-tekhnika‑1/individualnye-implantaty-izgotovlennye-metodom‑3d-pechati-iz-sopolimera-vinilidenftorida-s-tetraftor (accessed July 10, 2023).
  43. Vorob’ev A.O., Kul’bakin D.E., Chistyakov S.G., Mitrichenko A.D., Dubinenko G.E., Akimchenko I.O., Plotnikov E.V., Gogolev A.S., Choinzonov E.L., Buznik V.M., Bol’basov E.N. Individual 3D-Printed Implants Made from a Copolymer of Vinylidene Fluoride with Tetrafluoroethylene: Studies of the Effects of Steam Sterilization on Structure and Toxicity // Biomed. Eng. 2023. V. 57. P. 52–56. https://doi.org/10.1007/S10527-023-10266-Y/METRICS
  44. Synder Filtration. Ultrafiltration membranes. (n. d.). https://synderfiltration.com/ultrafiltration/membranes/ (accessed July 13, 2023).
  45. Gore. Microfiltration Media for Pharmaceutical, Bioprocessing, Food & Beverage Filtration. (n. d.). https://www.gore.com/products/microfiltration-media-for-pharmaceutical-bioprocessing-food-and-beverage-filtration (accessed July 13, 2023).
  46. Merck Millipore. Durapore® membrane filter, 0.22 µm. (n. d.). https://www.merckmillipore.com/NL/en/product/Durapore-Membrane-Filter‑0.22m, MM_NF-GVWP04700? ReferrerURL=https%3A%2F%2Fwww.google.com%2F (accessed July 13, 2023).
  47. Membrane Solutions. Hydrophobic PVDF membrane. (n. d.). https://www.membrane-solutions.com/pvdf_hydrophobic_membrane.htm (accessed July 13, 2023).
  48. Membrane Solutions. Hydrophobic PTFE membrane. (n. d.). https://www.membrane-solutions.com/ptfe_filtration.htm (accessed July 13, 2023).
  49. 3M. Beverage membrane modules. (n. d.). https://www.3m.com/3M/en_US/membrana-us/products/industrial-filtration/liqui-flux-beverage-membrane-modules/ (accessed July 13, 2023).
  50. Krackeler Scientific, Inc. Pall Gelman TF (PTFE) membranes. (n. d.). https://www.krackeler.com/catalog/product/3764/Pall-Gelman-TF-PTFE-Membranes (accessed July 13, 2023).
  51. Pall Corporation. 0.2um, Emflon® PFRW hydrophobic PTFE membrane filters. (n. d.). https://shop.pall.com/us/en/food-beverage/soft-drinks/vent-filtration‑2/zidgri78m4r (accessed July 13, 2023).
  52. Pall Corporation. Supor® beverage filter cartridges, AB3SBB7WH4 – Products. (n. d.). https://shop.pall.com/us/en/food-beverage/wine/final-filtration-microbial-stabilization‑1/zidAB3SBB7WH4? CategoryName=&CatalogID=&tracking=searchterm: (accessed July 13, 2023).
  53. Apel P.Yu., Dmitriev S.N. Treckovye membrany [Track membranes]. In A. B. Yaroslavtsev (Ed.) // Membrany i membrannye tekhnologii [Membranes and membrane technologies]. 2013.
  54. Guo Q., Huang Y., Xu M., Huang Q., Cheng J., Yu S., Zhang Y., Xiao C. PTFE porous membrane technology: A comprehensive review // J. Memb. Sci. 2022. V. 664. P. 121115. https://doi.org/10.1016/J.MEMSCI.2022.121115
  55. DuPont. Fluorocarbon vinyl ether polymers (US3282875A) // Google Patents. 1966. https://patents.google.com/patent/US3282875A/en (accessed October 29, 2024).
  56. Astakhov E., Astakhova A., Tsarin P., Kolganov I., Gorobets S. Primenenie termokhimicheski stoikikh fil’truyushchikh materialov v mikroelektronnoi promyshlennosti [Application of thermochemically stable filtering materials in microelectronic industry] // Electronics: Science, Technology, Business. 2019. V. 188. P. 128–132. https://doi.org/10.22184/1992-4178.2019.188.7.128.132
  57. Astakhov E., Astakhova A., Tsarin P., Kolganov I., Gorobets S., Dymova A. Primenenie novykh poristykh materialov dlya nuzh razlichnykh otrasley promyshlennosti [Application of new porous materials for the needs of various industries] // Electronics: Science, Technology, Business. 2019. V. 189. P. 130–134. https://doi.org/10.22184/1992-4178.2019.189.8.130.134
  58. Astakhov E.Yu., Bol’bit N.M., Klinshpont E.R., Tsarin P.G. Kharakteristiki poristykh plenok iz politetraftorétilena, poluchennykh na osnove suspensiy poroshkov v spirte [Characteristics of porous polytetrafluoroethylene films obtained from powder suspensions in alcohol] // Kriticheskie Tekhnologii. Membrany. 2005. V. 3. P. 34–40.
  59. Grakovich P.N., Ivanov L.F., Kalinin L.A., Ryabchenko I.L., Tolstopyatov E.M., Krasovsky, A.M. Lazernaya ablyatsiya politetraftorétilena [Laser ablation of polytetrafluoroethylene] // Rossiyskiy Khimicheskiy Zhurnal, 2008. V. 3. P. 97–105.
  60. Su C., Chang J., Tang K., Gao F., Li Y., Cao H., Novel three-dimensional superhydrophobic and strength-enhanced electrospun membranes for long-term membrane distillation // Sep. Purif. Technol. 2017. V. 178. P. 279–287. https://doi.org/10.1016/j.seppur.2017.01.050
  61. Lee E.-J., An A.K., Hadi P., Lee S., Woo Y.C., Shon H.K. Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation // J. Memb. Sci. 2017. V. 524. P. 712–720. https://doi.org/10.1016/j.memsci.2016.11.069.
  62. Seyed Shahabadi S.M., Rabiee H., Seyedi S.M., Mokhtare A., Brant J.A. Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluorideco -hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation // J. Memb. Sci. 2017. V. 537. P. 140–150. https://doi.org/10.1016/j.memsci.2017.05.039.
  63. Tverdokhlebova T.S., Bolbasov E.N., Bouznik V.M. Composition Polymeric Membranes Based on the VDF-TeFE Copolymer Formed by Electrospinning // IOP Conf. Ser. Mater. Sci. Eng. 2020. V. 731. P. 012022. https://doi.org/10.1088/1757-899X/731/1/012022
  64. Badaraev A.D., Koniaeva A., Krikova S.A., Shesterikov E.V., Bolbasov E.N., Nemoykina A.L., Bouznik V.M., Stankevich K.S., Zhukov Y.M., Mishin I.P., Varakuta E.Y., Tverdokhlebov S.I. Piezoelectric polymer membranes with thin antibacterial coating for the regeneration of oral mucosa // Appl. Surf. Sci. 2020. V. 504. P. 144068. https://doi.org/10.1016/j.apsusc.2019.144068
  65. Kolesnik I., Tverdokhlebova T., Danilenko N., Plotnikov E., Kulbakin D., Zheravin A., Bouznik V., Bolbasov E. Characterization and Determination of the Biocompatibility of Porous Polytetrafluoroethylene Membranes Fabricated via Electrospinning // J. Fluor. Chem. 2021. V. 246. P. 109798. https://doi.org/10.1016/J.JFLUCHEM.2021.109798
  66. Zaarour B., Zhu L., Huang C., Jin X. Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrospinning // RSC Adv. 2018. V. 8. P. 42353–42360. https://doi.org/10.1039/C8RA09257E
  67. Asai H., Kikuchi M., Shimada N., Nakane K. Effect of melt and solution electrospinning on the formation and structure of poly(vinylidene fluoride) fibres // RSC Adv. 2017. V. 7. P. 17593–17598. https://doi.org/10.1039/C7RA01299C
  68. Zheng J., He A., Li J., Han C.C. Polymorphism Control of Poly(vinylidene fluoride) through Electrospinning // Macromol Rapid Commun. 2007. V. 28. P. 2159–2162. https://doi.org/10.1002/marc.200700544
  69. Gopal R., Kaur S., Ma Z., Chan C., Ramakrishna S., Matsuura T. Electrospun nanofibrous filtration membrane // J. Memb. Sci. 2006. V. 281. 581–586. https://doi.org/10.1016/j.memsci.2006.04.026.
  70. Gee S., Johnson B., Smith A.L. Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes // J. Memb. Sci. 2018. V. 563. P. 804–812. https://doi.org/10.1016/j.memsci.2018.06.050
  71. Shibuya M., Park M.J., Lim S., Phuntsho S., Matsuyama H., Shon H.K. Novel CA/PVDF nanofiber supports strategically designed via coaxial electrospinning for high performance thin-film composite forward osmosis membranes for desalination // Desalination. 2018. V. 445. P. 63–74. https://doi.org/10.1016/j.desal.2018.07.025
  72. Liu C., Li X., Liu T., Liu Z., Li N., Zhang Y., Xiao C., Feng X. Microporous CA/PVDF membranes based on electrospun nanofibers with controlled crosslinking induced by solvent vapor // J. Memb. Sci. 2016. V. 512. P. 1–12. https://doi.org/10.1016/j.memsci.2016.03.062
  73. Lins L.C., Wianny F., Livi S., Dehay C., Duchet‐Rumeau J., Gérard J. Effect of polyvinylidene fluoride electrospun fiber orientation on neural stem cell differentiation // J. Biomed. Mater. Res. B Appl. Biomater. 2017. V. 105. P. 2376–2393. https://doi.org/10.1002/jbm.b.33778
  74. Fang C., Yang S., Zhao X., Du P., Xiong J. Electrospun montmorillonite modified poly(vinylidene fluoride) nanocomposite separators for lithium-ion batteries // Mater. Res. Bull. 2016. V. 79. P. 1–7. https://doi.org/10.1016/j.materresbull.2016.02.015
  75. Costa C.M., Lizundia E., Lanceros-Méndez S. Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components // Prog. Energy. Combust. Sci. 2020. V. 79. P. 100846. https://doi.org/10.1016/j.pecs.2020.100846
  76. Qing W., Shi X., Deng Y., Zhang W., Wang J., Tang C.Y. Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation // J. Memb. Sci. 2017. V. 540. P. 354–361. https://doi.org/10.1016/j.memsci.2017.06.060
  77. C. Su, Y. Li, H. Cao, C. Lu, Y. Li, J. Chang, Duan F. Novel PTFE hollow fiber membrane fabricated by emulsion electrospinning and sintering for membrane distillation // J. Memb. Sci. 2019. V. 583. P. 200–208. https://doi.org/10.1016/j.memsci.2019.04.037
  78. Zhao P., Soin N., Prashanthi K., Chen J., Dong S., Zhou E., Zhu Z., Narasimulu A.A., Montemagno C.D., Yu L., Luo J. Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators // ACS Appl. Mater. Interfaces. 2018. V. 10. 5880–5891. https://doi.org/10.1021/ACSAMI.7B18442/ASSET/IMAGES/LARGE/AM‑2017-18442Q_0007.JPEG
  79. Wakabayashi H., Yamagami S., Ikezawa N., Ogura A., Narihiro M., Arai K., Ochiai Y., Takeuchi K., Yamamoto T., Mogami T. Sub‑10-nm planar-bulk-CMOS devices using lateral junction control // IEEE International Electron Devices Meeting. 2003. P. 20.7.1–20.7.3. https://doi.org/10.1109/IEDM.2003.1269446
  80. Lee H., Yu L.E., Ryu S. W., Han J.W., Jeon K., Jang D.Y., Kim K.H., Lee J., Kim J.H., Jeon S.C., Lee G.S., Oh J.S., Park Y.C., Bae W.H., Lee H.M, Yang J.M., Yoo J.J., Kim S.I., Choi Y.K. Sub‑5nm all-around gate FinFET for ultimate scaling, Digest of Technical Papers // Symposium on VLSI Technology/ 2006. P. 58–59. https://doi.org/10.1109/VLSIT.2006.1705215
  81. Bracciale M.P., Capasso L., Sarasini F., Tirillò J., Santarelli M.L. Effect of Aging on the Mechanical Properties of Highly Transparent Fluoropolymers for the Conservation of Archaeological Sites // Polymers. 2022. V. 14. P. 912. https://doi.org/10.3390/POLYM14050912/S1
  82. Zhao S., Zhao J., Wen M., Yao M., Wang F., Huang F., Zhang Q., Cheng Y.B., Zhong J. Sequentially Reinforced Additive Coating for Transparent and Durable Superhydrophobic Glass // Langmuir. 2018. V. 34. P. 11316–11324. https://doi.org/10.1021/ACS.LANGMUIR.8B01960/ASSET/IMAGES/LARGE/LA‑2018-01960K_0007.JPEG
  83. Holscot Europe. Properties of FEP, PFA, ETFE and PTFE. (n. d.). http://www.holscoteurope.com/en/materials/ (accessed July 6, 2023).
  84. Galante A.M.S., Galante O.L., Campos L.L. Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry // Nucl. Instrum. Methods. Phys. Res. A. 2010. V. 619. P. 177–180. https://doi.org/10.1016/j.nima.2009.10.103
  85. UV Solutions. Use of fluoropolymers in UV sterilization equipment. 2021. https://uvsolutionsmag.com/articles/2021/use-of-fluoropolymers-in-uv-sterilization-equipment/ (accessed July 6, 2023).
  86. Grosfils P., Lutsko J.F. Impact of Surface Roughness on Crystal Nucleation // Crystals. 2020. V. 11. No 4. https://doi.org/10.3390/cryst11010004
  87. Vitlab. Продукты из фторопласта: VITLAB изделия для лаборатории (RU) [Fluoroplastic products: VITLAB laboratory equipment (RU)]. (n. d.). https://www.vitlab.com/ru/produkty/informacija/produkty-iz-ftoroplasta/ (accessed July 10, 2023).
  88. Elliott L.D., Knowles J.P., Koovits P.J., Maskill K.G., Ralph M.J., Lejeune G., Edwards L.J., Robinson R.I., Clemens I.R., Cox B., Pascoe D.D., Koch G., Eberle M., Berry M.B., Booker‐Milburn K.I. Batch versus Flow Photochemistry: A Revealing Comparison of Yield and Productivity // Chemistry – A European Journal. 2014. V. 20. P. 15226–15232. https://doi.org/10.1002/chem.201404347
  89. Cambié D., Bottecchia C., Straathof N.J.W., Hessel V., Noël T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment // Chem. Rev. 2016. V. 116. P. 10276–10341. https://doi.org/10.1021/acs.chemrev.5b00707
  90. Szymborski T., Jankowski P., Garstecki P. Teflon microreactors for organic syntheses // Sens Actuators B Chem. 2018. V. 255. P. 2274–2281. https://doi.org/10.1016/j.snb.2017.09.035
  91. Szymborski T., Jankowski P., Ogończyk D., Garstecki P. An FEP Microfluidic Reactor for Photochemical Reactions // Micromachines. 2018. V. 9 P. 156. https://doi.org/10.3390/mi9040156.
  92. Elvira K.S., Gielen F., Tsai S.S.H., Nightingale A.M. Materials and methods for droplet microfluidic device fabrication // Lab. Chip. 2022. V. 22. P. 859–875. https://doi.org/10.1039/D1LC00836F
  93. Engineers Edge. Particle size and distribution air / fluid filter – Filtration. (n. d.). https://www.engineersedge.com/filtration/filtration_particle_size.htm (accessed September 13, 2023).
  94. Hussain A., Janson A., Matar J. M., Adham S. Membrane distillation: recent technological developments and advancements in membrane materials // Emergent Mater. 2022. V. 5. P. 347–367. https://doi.org/10.1007/s42247-020-00152-8
  95. Synder Filtration. Ultrafiltration membranes. (n. d.). https://synderfiltration.com/ultrafiltration/membranes/ (accessed July 13, 2023).
  96. Yanpai Deutschland Technische Textilien GmbH. PTFE membrane. (n. d.). https://www.yanpai.de/ptfe-membrane‑1 (accessed July 13, 2023).
  97. Zhao J., Shi L., Loh C.H., Wang R. Preparation of PVDF/PTFE hollow fiber membranes for direct contact membrane distillation via thermally induced phase separation method // Desalination. 2018. V. 430. P. 86–97. https://doi.org/10.1016/J.DESAL.2017.12.041
  98. Pu L., Xu Y., Xia Q., Ding J., Wang Y., Shan C., Wu D., Zhang Q., Gao G., Pan B. Ferroelectric membrane for water purification with arsenic as model pollutant // Chemical Engineering Journal. 2021. V. 403. P. 126426. https://doi.org/10.1016/j.cej.2020.126426
  99. American Air Filter Thailand. Microelectronics clean air solutions. (2021). https://www.aafthailand.com/wp-content/uploads/2021/07/Microelectronics_MAFP‑99-101A.pdfSolutions, (accessed August 1, 2023).
  100. Zhou Y., Liu Y., Zhang M., Feng Z., Yu D.-G., Wang K. Electrospun Nanofiber Membranes for Air Filtration: A Review // Nanomaterials. 2022. V. 12. P. 1077. https://doi.org/10.3390/nano12071077
  101. Li X., Wang X.-X., Yue T.-T., Xu Y., Zhao M.-L., Yu M., Ramakrishna S., Long Y.-Z. Waterproof-breathable PTFE nanoand Microfiber Membrane as High Efficiency PM2.5 Filter // Polymers. 2019. V. 11. P. 590. https://doi.org/10.3390/polym11040590
  102. Vanangamudi A., Hamzah S., Singh G. Synthesis of hybrid hydrophobic composite air filtration membranes for antibacterial activity and chemical detoxification with high particulate filtration efficiency (PFE) // Chemical Engineering Journal. 2015. V. 260. P. 801–808. https://doi.org/10.1016/j.cej.2014.08.062
  103. Huang Z.-X., Liu X., Zhang X., Wong S.-C., Chase G.G., Qu J.-P., Baji A. Electrospun polyvinylidene fluoride containing nanoscale graphite platelets as electret membrane and its application in air filtration under extreme environment // Polymer. 2017. V. 131. P. 143–150. https://doi.org/10.1016/j.polymer.2017.10.033
  104. He W., Guo Y., Zhao Y.-B., Jiang F., Schmitt J., Yue Y., Liu J., Cao J., Wang J. Self-supporting smart air filters based on PZT/PVDF electrospun nanofiber composite membrane // Chemical Engineering Journal. 2021. V. 423. P. 130247. https://doi.org/10.1016/j.cej.2021.130247
  105. Mazhar S.I., Shafi H.Z., Shah A., Asma M., Gul S., Raffi M. Synthesis of surface modified hydrophobic PTFE-ZnO electrospun nanofibrous mats for removal of volatile organic compounds (VOCs) from air // Journal of Polymer Research. 2020. V. 27. P. 1–13. https://doi.org/10.1007/S10965-020-02218-X/TABLES/3
  106. Zheng G., Shao Z., Chen J., Jiang J., Zhu P., Wang X., Li W., Liu Y. Self-Supporting Three-Dimensional Electrospun Nanofibrous Membrane for Highly Efficient Air Filtration // Nanomaterials. 2021. V. 11. P. 2567. https://doi.org/10.3390/nano11102567
  107. Shen H., Zhou Z., Wang H., Zhang M., Han M., Durkin D.P., Shuai D., Shen Y. Development of Electrospun Nanofibrous Filters for Controlling Coronavirus Aerosols // Environ Sci. Technol. Lett. 2021. V. 8. P. 545–550.
  108. Bui T.T., Shin M.K., Jee S.Y., Long D.X., Hong J., Kim M.-G. Ferroelectric PVDF nanofiber membrane for high-efficiency PM0.3 air filtration with low air flow resistance // Colloids Surf. A Physicochem. Eng. Asp. 2022. V. 640. P. 128418. https://doi.org/10.1016/j.colsurfa.2022.128418

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».