Self-Organization of Pyrrole-Centered Pentaheterocyclic Ensembles in the Hetaryl Nitrile/Ethynyl Hetarene/KOBut/DMSO System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Pyrrole-centered pentaheterocyclic ensembles, tetrasubstituted 1H-pyrroles bearing fundamental heterocycles (pyrrole, furan, thiophene, pyridine) as substituents in various combinations, were synthesized in up to 60% yield by the interaction of hetarylnitriles with ethynylhetarenes in the KOBut/DMSO system (room temperature, 1 h). The synthesis is a cascade self-organization of three molecules of ethynylhetarene and one molecule of hetarylnitrile, triggered and driven by acetylenic carbanions.

About the authors

E. Yu Schmidt

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-0188-3015
Irkutsk, Russia

N. A Lobanova

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-4594-1034
Irkutsk, Russia

I. V Tatarinova

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0001-6237-8533
Irkutsk, Russia

I. A Ushakov

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-0176-1699
Irkutsk, Russia

B. A Trofimov

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: boris_trofimov@irioch.irk.ru
ORCID iD: 0000-0002-0430-3215
Irkutsk, Russia

References

  1. Suzuki S., Yamaguchi J. Chem. Commun. 2017, 53, 1568–1582. https://doi.org/10.1039/C6CC09550J
  2. Rossi R., Bellina F., Lessi M., Manzini C., Perego L.A. Synthesis. 2014, 46, 2833–2883. https://doi.org/10.1055/s-0034-1378674
  3. Tamilavan V., Sakthivel P., Li Y., Song M., Kim C.-H., Jin S.-H., Hyun M.-H. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3169–3177. https://doi.org/10.1002/pola.24101
  4. Gholap S.S. Eur. J. Med. Chem. 2016, 110, 13−31. https://doi.org/10.1016/j.ejmech.2015.12.017
  5. Bhardwaj V., Gumber D., Abbot V., Dhiman S., Sharma P. RSC Adv. 2015, 5, 15233−15266. https://doi.org/10.1039/C4RA15710A
  6. Lea A.P., McTavish D. Drugs. 1997, 53, 828–847. https://doi.org/10.2165/00003495-199753050-00011
  7. Li C.-S., Tsai Y.-H., Lee W.-C., Kuo W.-J. J. Org. Chem. 2010, 75, 4004–4013. https://doi.org/10.1021/jo100158a
  8. Bai J., Xu N., Wang H., Luan X. Org. Lett. 2022, 24, 5099–5104. https://doi.org/10.1021/acs.orglett.2c01925
  9. Zhao Y., Li R., Zhao Q., Yao J., Miao M. Org. Lett. 2023, 25, 3978–3983. https://doi.org/10.1021/acs.orglett.3c01434
  10. Yang J., Zhang Y., Wu X., Dai W., Chen D., Shi J., Tong B., Peng Q., Xie H., Cai Z., Dong Y., Zhang X. Nat. Commun. 2021, 12, 4883. https://doi.org/10.1038/s41467-021-25174-6
  11. Shoji T., Takagaki S., Tanaka M., Araki T., Sugiyama S., Sekiguchi R., Ohta A., Ito S., Okujima T. Heterocycles. 2017, 94, 1870–1883. https://doi.org/10.3987/com-17-13781
  12. Polák P., Tobrman T. Org. Lett. 2017, 19, 4608−4611. https://doi.org/10.1021/acs.orglett.7b02219
  13. Yamaguchi M., Fujiwara S., Manabe K. Org. Lett. 2019, 21, 6972−6977. https://doi.org/10.1021/acs.orglett.9b02559
  14. Schmidt E.Yu., Tatarinova I.V., Lobanova N.A., Ushakov I.A., Bagryanskay I.Yu., Trofimov B.A. Org. Biomol. Chem. 2023, 21, 7209–7218. https://doi.org/10.1039/D3OB01311A
  15. Kolb H.C., Finn M.G., Sharpless K.B. Angew. Chem. Int. Ed. 2001, 40, 2004−2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3C2004::AID-ANIE2004%3E3.0.CO;2-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).