Copper and Copper Oxide Nanoparticles in the Synthesis of N-Aryl Derivatives of Adamantane-Containing Amines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

N-Arylation of several adamantane-containing amines with iodobenzene and its derivatives containing electron-donor and electron-withdrawing groups in para- and meta-positions was studied under catalysis by non-immobilized copper and copper oxide nanoparticles. It was shown that the best yields of the target N-aryl derivatives are achieved using the CuNPs 10/80 nm/rac-BINOL catalytic system when carrying out the reaction in DMSO at 110°C, which turned out to be the most universal. In some cases, it is possible to use other ligands like 2-acetylcyclohexanone and 2-isobutyrylcyclohexanone, as well as DMF as a solvent at 140°C. The maximum yields of N-aryl derivatives exceeded 90%, the dependence of the arylation reaction efficiency on the structure of adamantane-containing amines was shown, however, the effect of substituents in the aryl ring was not so significant. The leaching of copper into the solution during the model reaction was studied, it was shown that the degree of leaching depends on the nature of the ligand used. For comparison purposes, N-heteroarylation of adamantaneamine with trifluoromethyl-substituted 2-bromopyridines was studied, it was found that in this reaction copper leaching occurs to a greater extent. Using TEM, electronegraphy and EDX spectroscopy data, it was shown that 25 nm CuNPs are converted mainly into copper (I) oxide during the reaction, while the average size of the nanoparticles remains virtually unchanged.

About the authors

A. V Murashkina

M.V. Lomonosov Moscow State University, Department of Chemistry; A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS

ORCID iD: 0000-0002-4288-8912
Moscow, Russia; Moscow, Russia

V. I Fomenko

M.V. Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

A. D Averin

M.V. Lomonosov Moscow State University, Department of Chemistry; A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS

ORCID iD: 0000-0001-6757-8868
Moscow, Russia

A. A Shesterkina

M.V. Lomonosov Moscow State University, Department of Chemistry

ORCID iD: 0000-0002-9961-7515
Moscow, Russia

E. N Savelyev

Volgograd State Technical University

ORCID iD: 0000-0002-1937-768X
Volgograd, Russia

I. A Novakov

Volgograd State Technical University

ORCID iD: 0000-0002-0980-6591
Volgograd, Russia

I. P Beletskaya

M.V. Lomonosov Moscow State University, Department of Chemistry; A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: beletska@org.chem.msu.ru
ORCID iD: 0000-0001-9705-1434
Moscow, Russia; Moscow, Russia

References

  1. Ma D., Cai Q. Acc. Chem. Res. 2008, 43, 1450–1460. https://doi.org/10.1021/ar8000298
  2. Evano G., Blanchard N., Toumi M. Chem. Rev. 2008, 108, 3054–3131. https://doi.org/10.1021/cr8002505
  3. Monnier F., Taillefer M. Angew. Chem. Int. Ed. 2009, 48, 6954–6971. https://doi.org/10.1002/anie.200804497
  4. Sambiagio C., Marsden S., Blacker A., McGowan P. Chem. Soc. Rev. 2014, 43, 3525–3550. https://doi.org/10.1039/c3cs60289c
  5. Shaughnessy K.H., Ciganek E., DeVasher R.B. Organic Reactions. 2014, 85, 1–668. https://doi.org/10.1002/0471264180.or085.01
  6. Okano K., Tokuyama H., Fukuyama T. Chem. Commun. 2014, 50, 13650–13663. https://doi.org/10.1039/C4CC03895A
  7. Neetha M., Saranya S., Ann Harry N., Anilkumar G. ChemistrySelect. 2020, 5, 736–753. https://doi.org/10.1002/slct.201904436
  8. Beletskaya I.P., Averin A.D. Russ. Chem. Rev. 2021, 90, 1359–1396. https://doi.org/10.1070/RCR4999
  9. Esmaeilpour M., Sardarian A.R., Firouzabadi H. Appl. Organomet. Chem. 2018, 32, 1–16. https://doi.org/10.1002/aoc.4300
  10. Mitrofanov A., Murashkina A., Martín-García I., Alonso F., Beletskaya I. Catal. Sci. Technol. 2017, 7. 4401–4412. https://doi.org/10.1039/c7cy01343d
  11. Mondal P., Sinha A., Salam N., Roy A., Jana N., Islam S. RSC Adv. 2013, 3, 5615–5623. https://doi.org/10.1039/c3ra23280h
  12. Nador F., Volpe M., Alonso F., Radivoy G. Tetrahedron. 2014, 70, 6082–6087. https://doi.org/10.1016/j.tet.2014.04.003
  13. Hajipour A., Dordahan F., Rafiee F., Mahdavi M. J. Pharm. Pharmacol. 2014, 28, 809–813. https://doi.org/10.1002/aoc.3203
  14. Gopiraman M., Ganesh Babu S., Khatri Z., Kai W., Kim Y., Endo M., Karvembu R., Kim I. Carbon. 2013, 62, 135–148. https://doi.org/10.1016/j.carbon.2013.06.005
  15. Movahed S.K., Dabiri M., Bazgir A. Appl. Catal. A Gen. 2014, 481, 79–88. https://doi.org/10.1016/j.apcata.2014.04.023
  16. Keßler M., Robke S., Sahler S., Prechtl M. Catal. Sci. Technol. 2014, 4, 102–108. https://doi.org/10.1039/c3cy00543g
  17. Khalil A., Jouiad M., Khraisheh M., Hashaikeh R. J. Nanomater. 2014, 9, 1–7. https://doi.org/doi/10.1155/2014/438407
  18. Rout L., Jammi S., Punniyamurthy T. Org. Lett. 2007, 9, 3397–3399. https://doi.org/10.1021/ol0713887.
  19. Jammi S., Sakthivel S., Rout L., Mukherjee T., Mandai S., Mitra R., Saha P., Punniyamurthy T. J. Org. Chem. 2009, 74, 1971–1976. https://doi.org/10.1021/jo8024253
  20. Reddy K., Satish G., Ramesh K., Karnakar K., Nageswar Y. Tetrahedron Lett. 2012, 53, 3061–3065. https://doi.org/10.1016/j.tetlet.2012.04.012
  21. Suramwar N., Thakare S., Karade N., Khaty N. J. Mol. Catal. 2012, 359, 28–34. https://doi.org/10.1016/j.molcata.2012.03.017
  22. Sreedhar B., Arundhathi R., Reddy P., Kantam M. J. Org. Chem. 2009, 74, 7951–7954. https://doi.org/10.1021/jo901462g
  23. Seitkalieva M.M., Samoylenko D.E., Lotsman K.A., Rodygin K.S., Ananikov V.P. Coord. Chem. Rev. 2021, 445, 213982. https://doi.org/10.1016/j.ccr.2021.213982
  24. Murashkina A.V., Averin A.D., Panchenko S.P., Abel A.S., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Novakov I.A., Correia C.R.D., Beletskaya I.P. Russ. J. Org. Chem. 2022, 58, 15–24. https://doi.org/10.1134/S107042802201002X
  25. Kuliukhina D.S., Averin A.D., Panchenko S.P., Abel A.S., Savelyev E.N., Orlinson B.S., Novakov I.A., Correia C.R.D, Beletskaya I.P. Russ. J. Org. Chem. 2022, 58, 167–174. https://doi.org/10.1134/S1070428022020014
  26. Fomenko V.I., Murashkina A.V., Averin A.D., Shesterkina A.A., Beletskaya I.P. Catalysts. 2023, 13, 1–20. https://doi.org/10.3390/catal13020331
  27. Kuliukhina D.S., Averin A.D., Abel A.S., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Russ. Chem. Bull. 2023, 72, 2612–2623. https://doi.org/10.1007/s11172-023-4065-x
  28. Leksakov D.A., Borisova A.S., Murashkina A.V., Kuliukhina D.S., Averin A.D., Vergun V.V., Isaeva V.I., Savelyev E.N., Novakov I.A., Beletskaya I.P. Russ. J. Org. Chem. 2024, 60, 2321–2330. https://doi.org/10.1134/s1070428024120029
  29. Novakov I.A., Orlinson B.S., Savelyev E.N., Potaenkova E.A., Shilin A.K. Patent RF RU 2495020 C1 2013.
  30. Gopalan B., Thomas A., Shah D.M. PCT Int. Appl. WO 2006090244 2006; Chem. Abstr. 2006, 145, 292604.
  31. Averin A.D., Ranyuk E.R., Golub S.L., Buryak A.K., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Synthesis. 2007, 2007, 2215–2221. https://doi.org/10.1055/s-2007-983760
  32. Averin A.D., Panchenko S.P., Abel A.S., Maloshitskaya O.A., Butov G.M., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Russ. J. Org. Chem. 2017, 53, 1788–1798. https://doi.org/10.1134/S1070428017120028
  33. Panchenko S.P., Abel A.S., Averin A.D., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Russ. J. Org. Chem. 2017, 53, 1497–1504. https://doi.org/10.1007/s11172-016-1481-1
  34. Averin A.D., Ulanovskaya M., Buryak A.K., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Russ. J. Org. Chem. 2010, 46, 1790–1811. https://doi.org/10.1134/S1070428010120055
  35. Borisova A.S., Kuliukhina D.S., Malysheva A.S., Murashkina A.V., Averin A.D., Vergun V.V., Isaeva V.I., Savelyev E.N., Novakov I.A., Beletskaya I.P. Russ. Chem. Bull. 2024, 73, 3567–3577. https://doi.org/10.1007/s11172-024-4467-4
  36. Lyakhovich M.S., Murashkina A.V., Averin A.D., Abel A.S., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Beletskaya I.P. Russ. J. Org. Chem. 2019, 55, 737–747. https://doi.org/10.1134/S1070428019060010
  37. Lyakhovich M.S., Murashkina A.V., Panchenko S.P., Averin A.D., Abel A.S., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Beletskaya I.P. Russ. J. Org. Chem. 2021, 57, 768–783. https://doi.org/10.1134/S1070428021050031

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).