Chemodivergent Photocatalytic Reaction of Sodium Phenylsulfinate with 2-Iodopyridine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chemodivergent synthesis of 2-(phenylsulfonyl)pyridine and pyridin-2-yl benzenesulfinate was performed from 2-iodopyridine and sodium phenylsulfinate using Ni/photoredox-catalysis under visible light irradiation (450 nm, 30 W). It was shown that the nature of the photocatalyst determines the formation of C-S or C-O product.

About the authors

V. A. Ionova

Department of Chemistry, M. V. Lomonosov Moscow State University; A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: v-ionova@mail.ru
ORCID iD: 0000-0003-1193-0636
Moscow, Russia; Moscow, Russia

A. S. Abel

Department of Chemistry, M. V. Lomonosov Moscow State University; A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS

ORCID iD: 0000-0002-2951-4529
Moscow, Russia; Moscow, Russia

I. P. Beletskaya

Department of Chemistry, M. V. Lomonosov Moscow State University; A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS

ORCID iD: 0000-0001-9705-1434
Moscow, Russia; Moscow, Russia

References

  1. Ivachtchenko A., Golovina E., Kadieva M. et al. Bioorg. Med. Chem., 2013, 21, 4614–4627. https://doi.org/10.1016/j.bmc.2013.05.040
  2. Ma Y., Liu R., Gong X. et al. J. Agric. Food Chem., 2006, 54, 7724−7728. https://doi.org/10.1021/jf0609328
  3. Liang S., Hofman K., Friedrich M. et al. ChemSusChem, 2021, 14, 4878–4902. https://doi.org/10.1002/cssc.202101635
  4. Choudary B.M., Chowdari N.S., Kantam M.L. J. Chem. Soc., Perkin Trans., 2000, 1, 2689–2693. https://doi.org/10.1039/b002931i
  5. Beletskaya I.P., Ananikov V.P. Chem. Rev., 2022, 122, 16110–16293. https://doi.org/10.1021/acs.chemrev.1c00836
  6. Cabrera-Afonso M.J., Lu Z.-P., Kelly C.B. et al. Chem. Sci., 2018, 9, 3186–3191. https://doi.org/10.1039/C7SC05402E
  7. Chawla R., Yadav L.D.S. Org. Biomol. Chem., 2019, 17, 4761–4766. https://doi.org/10.1039/C9OB00864K
  8. Jiang S., Zhang Z.-T., Young D.J. et al. Org. Chem. Front., 2022, 9, 1437–1444. https://doi.org/10.1039/d1qo01850g
  9. Kim M., You E., Park S., Hong S. Chem. Sci., 2021, 12, 6629–6637. https://doi.org/10.1039/D1SC00776A
  10. Liu N.-W., Hofman K., Herbert A., Manolikakes G. Org. Lett., 2018, 20, 760–763. https://doi.org/10.1021/acs.orglett.7b03896
  11. Yue H., Zhu C., Rueping M. Angew. Chem. Int. Ed., 2018, 57, 1371–1375. https://doi.org/10.1002/anie.201711104
  12. Ionova V.A., Abel A.S., Averin A.D., Beletskaya I.P. Adv. Syn. Catal., 2024, 366, 3173–3180. https://doi.org/10.1002/adsc.202400350
  13. Zhu D.-L., Li J., Young D.J. et al. Tetrahedron, 2025, 184, 134733. https://doi.org/10.1016/j.tet.2025.134733
  14. Chan A.Y., Perry I.B., Bissonnette N.B. et al. Chem. Rev., 2022, 122, 1485–1542. https://doi.org/10.1021/acs.chemrev.1c00383
  15. Baidya M., Kobayashi S., Mayr H. J. Am. Chem. Soc. 2010, 132, 4796–4805. https://doi.org/10.1021/ja9102056
  16. Cacchi S., Fabrizi G., Goggiamani A. et al. J. Org. Chem., 2004, 69, 5608–5614. https://doi.org/10.1021/jo0493469
  17. Ionova V.A., Dmitrieva A.V., Abel A.S. et al. Dalton Trans., 2024, 53, 17021–17035. https://doi.org/10.1039/D4DT02067G
  18. Garreau M., Le Vaillant F., Waser J. Angew. Chem. Int. Ed., 2019, 58, 8182–8186. https://doi.org/10.1002/anie.201901922

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).