Divergent approach to 5-cyanotriazoles and triazolo[1,5-a]quinolines based on Pd-catalyzed cyanation of 2-(5-iodotriazolyl)phenylacetic acid derivatives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Divergent approach to 5-cyanotriazoles and triazolo[1,5-a]quinolines based on Pd-catalyzed cyanation of 2-(5-iodotriazolyl)phenylacetic acid derivatives has been developed. Chemoselectivity is controlled by the choice of a cyanide source. Thus, CuCN leads only to replacement of iodine by nitrile moiety, while KCN induces further cyclization of the cyanation product via intramolecular condensation. The method is applicable to the preparation of both types of heterocyclic compounds in good yields (63—88%).

About the authors

R. N Galashev

M.V. Lomonosov Moscow State University, Chemistry Department

Moscow, Russia

G. V Latyshev

M.V. Lomonosov Moscow State University, Chemistry Department

Moscow, Russia

Y. N Kotovshchikov

M.V. Lomonosov Moscow State University, Chemistry Department

Email: kotovshchikov@org.chem.msu.ru
ORCID iD: 0000-0003-2103-5985
Moscow, Russia

N. V Lukashev

M.V. Lomonosov Moscow State University, Chemistry Department

Moscow, Russia

I. P Beletskaya

M.V. Lomonosov Moscow State University, Chemistry Department

ORCID iD: 0000-0001-9705-1434
Moscow, Russia

References

  1. Scattergood P.A., Sinopoli A., Elliott P.I.P. Coord. Chem. Rev. 2017, 350, 136–154. https://doi.org/10.1016/j.ccr.2017.06.017
  2. Schulze B., Schubert U.S. Chem. Soc. Rev. 2014, 43, 2522–2571. https://doi.org/10.1039/c3cs60386e
  3. Huang D., Zhao P., Astruc D. Coord. Chem. Rev. 2014, 272, 145–165. https://doi.org/10.1016/j.ccr.2014.04.006
  4. Huo J., Hu H., Zhang M., Hu X., Chen M., Chen D., Liu J., Xiao G., Wang Y., Wen Z. RSC Adv. 2017, 7, 2281–2287. https://doi.org/10.1039/c6ra27012c
  5. Kantheti S., Narayan R., Raju K.V.S.N. RSC Adv. 2015, 5, 3687–3708. https://doi.org/10.1039/c4ra12739k
  6. Ben Nejma A., Znati M., Daich A., Othman M., Lawson A.M., Ben Jannet H. Steroids. 2018, 138, 102–107. https://doi.org/10.1016/j.steroids.2018.07.004
  7. Aher N.G., Pore V.S., Mishra N.N., Kumar A., Shukla P.K., Sharma A., Bhat M.K. Bioorg. Med. Chem. Lett. 2009, 19, 759–763. https://doi.org/10.1016/j.bmcl.2008.12.026
  8. Thirumurugan P., Matosiuk D., Jozwiak K. Chem. Rev. 2013, 113, 4905–4979. https://doi.org/10.1021/cr200409f
  9. Agalave S.G., Maujan S.R., Pore V.S. Chem. – Asian J. 2011, 6, 2696–2718. https://doi.org/10.1002/asia.201100432
  10. Rani A., Singh G., Singh A., Maqbool U., Kaur G., Singh J. RSC Adv. 2020, 10, 5610–5635. https://doi.org/10.1039/c9ra09510a
  11. Dheer D., Singh V., Shankar R. Bioorg. Chem. 2017, 71, 30–54. https://doi.org/10.1016/j.bioorg.2017.01.010
  12. Ameziane El Hassani I., Rouzi K., Ameziane El Hassani A., Karrouchi K., Ansar M. Organics. 2024, 5, 450–471. https://doi.org/10.3390/org5040024
  13. Vala D.P., Vala R.M., Patel H.M. ACS Omega. 2022, 7, 36945–36987. https://doi.org/10.1021/acsomega.2c04883
  14. Hein J.E., Fokin V.V. Chem. Soc. Rev. 2010, 39, 1302–1315. https://doi.org/10.1039/b904091a
  15. Haldón E., Nicasio M.C., Pérez P.J. Org. Biomol. Chem. 2015, 13, 9528–9550. https://doi.org/10.1039/C5OB01457C
  16. Neumann S., Biewend M., Rana S., Binder W.H. Macromol. Rapid Commun. 2020, 41, 1900359. https://doi.org/10.1002/marc.201900359
  17. Hein J.E., Tripp J.C., Krasnova L.B., Sharpless K.B., Fokin V.V. Angew. Chem. Int. Ed. 2009, 48, 8018–8021. https://doi.org/10.1002/anie.200903558
  18. Arenas J.L., Crousse B. Eur. J. Org. Chem. 2021, 2021, 2665–2679. https://doi.org/10.1002/ejoc.202100327
  19. Deng J., Wu Y.M., Chen Q.Y. Synthesis. 2005, 2730–2738. https://doi.org/10.1055/s-2005-872119
  20. Gribanov P.S., Chesnokov G.A., Topchiy M.A., Asachenko A.F., Nechaev M.S. Org. Biomol. Chem. 2017, 15, 9575–9578. https://doi.org/10.1039/C7OB02091K
  21. Carcenac Y., David-Quillot F., Abarbri M., Duchêne A., Thibonnet J. Synthesis. 2013, 45, 633–638. https://doi.org/10.1055/s-0032-1318112
  22. Govdi A.I., Danilkina N.A., Ponomarev A.V., Balova I.A. J. Org. Chem. 2019, 84, 1925–1940. https://doi.org/10.1021/acs.joc.8b02916
  23. Schulman J.M., Friedman A.A., Panteleev J., Lautens M. Chem. Commun. 2012, 48, 55–57. https://doi.org/10.1039/C1CC16110E
  24. Kotovshchikov Y.N., Latyshev G.V., Beletskaya I.P., Lukashev N.V. Synthesis. 2018, 50, 1926–1934. https://doi.org/10.1055/s-0036-1591896
  25. Szuroczki P., Sámson J., Kollár L. ChemistrySelect. 2019, 4, 5527–5530. https://doi.org/10.1002/slct.201900848
  26. De Albuquerque D.Y., De Moraes J.R., Schwab R.S. Eur. J. Org. Chem. 2019, 2019, 6673–6681. https://doi.org/10.1002/ejoc.201901249
  27. Gribanov P.S., Philippova A.N., Topchiy M.A., Minaeva L.I., Asachenko A.F., Osipov S.N. Molecules. 2022, 27, 1999. https://doi.org/10.3390/molecules27061999
  28. Kotovshchikov Y.N., Tatevosyan S.S., Latyshev G.V., Kugusheva Z.R., Lukashev N.V., Beletskaya I.P. New J. Chem. 2023, 47, 12239–12247. https://doi.org/10.1039/D3NJ01264F
  29. Li L., Shang T., Ma X., Guo H., Zhu A., Zhang G. Synlett. 2015, 26, 695–699. https://doi.org/10.1055/s-0034-1379970
  30. do Nascimento J.E.R., Gonçalves L.C.C., Hooyberghs G., Van der Eycken E.V., Alves D., Lenardão E.J., Perin G., Jacob R.G. Tetrahedron Lett. 2016, 57, 4885–4889. https://doi.org/10.1016/j.tetlet.2016.09.027
  31. Danilkina N.A., Govdi A.I., Balova I.A. Synthesis. 2020, 52, 1874–1896. https://doi.org/10.1055/s-0039-1690858
  32. Tatevosyan S.S., Kotovshchikov Y.N., Latyshev G.V., Erzunov D.A., Sokolova D.V., Beletskaya I.P., Lukashev N.V. J. Org. Chem. 2020, 85, 7863–7876. https://doi.org/10.1021/acs.joc.0c00520
  33. Tatevosyan S.S., Kotovshchikov Y.N., Latyshev G.V., Lukashev N.V., Beletskaya I.P. Synthesis. 2022, 54, 369–377. https://doi.org/10.1055/a-1623-2333
  34. Voloshkin V.A., Kotovshchikov Y.N., Latyshev G.V., Lukashev N.V., Beletskaya I.P. J. Org. Chem. 2022, 87, 7064–7075. https://doi.org/10.1021/acs.joc.2c00235
  35. Kotovshchikov Y.N., Latyshev G.V., Navasardyan M.A., Erzunov D.A., Beletskaya I.P., Lukashev N.V. Org. Lett. 2018, 20, 4467−4470. https://doi.org/10.1021/acs.orglett.8b01755
  36. Kotovshchikov Y.N., Latyshev G.V., Kirillova E.A., Moskalenko U.D., Lukashev N.V., Beletskaya I.P. J. Org. Chem. 2020, 85, 9015–9028. https://doi.org/10.1021/acs.joc.0c00931
  37. Gevondian G.A., Kotovshchikov Y.N., Latyshev G.V., Lukashev N.V., Beletskaya I.P. J. Org. Chem. 2021, 86, 5639–5650. https://doi.org/10.1021/acs.joc.1c00115
  38. Kotovshchikov Y.N., Sultanov R.H., Latyshev G.V., Lukashev N.V., Beletskaya I.P. Org. Biomol. Chem. 2022, 20, 5764–5770. https://doi.org/10.1039/D2OB00909A
  39. Barashkova X.A., Gevondian A.G., Latyshev G.V., Kotovshchikov Y.N., Bezzubov S.I., Lukashev N.V., Beletskaya I.P. Org. Lett. 2024, 26, 9625–9630. https://doi.org/10.1021/acs.orglett.4c03082
  40. Gevondian A.G., Kotovshchikov Y.N., Latyshev G.V., Lukashev N.V., Beletskaya I.P. Russ. J. Org. Chem. 2023, 59, 1465–1472. https://doi.org/10.1134/S1070428023090026
  41. Galashev R.N., Latyshev G.V., Kotovshchikov Y.N., Lukashev N.V., Beletskaya I.P. Org. Biomol. Chem. 2025, 23, 4725–4729. https://doi.org/10.1039/d5ob00356c
  42. Nusser B.D., Jenkins L.E., Lin X., Zhu L. J. Org. Chem. 2024, 89, 12610–12618. https://doi.org/10.1021/acs.joc.4c01533

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).