Indole-2-Carboxamide Derivatives: Synthesis and Estimation of Their Potential as Metallo-Beta-Lactamase Inhibitors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bacterial resistance to β-lactam antibiotics is one of the key challenges in global healthcare. A major mechanism underlying this resistance is the production of β-lactamases by pathogens. These enzymes are classified into four groups (A–D), with class B metallo-β-lactamases, particularly the NDM family, posing the highest threat. These zinc-dependent enzymes are capable of inactivating nearly all β-lactam antibiotics, and to date, there are no clinically approved inhibitors for this class. Previous studies have shown that certain derivatives of indole-2-carboxylic acid, hydroxamic acids, and glycine-based compounds can inhibit NDM-1 by interacting with Zn2+ ions and amino acid residues within the enzyme’s active site. However, the antibacterial potential of indole-2-carboxamide derivatives of the aforementioned compounds has not yet been explored as inhibitors of metallo-β-lactamases. In the search for new candidates to develop specific metallo-β-lactamase inhibitors, a known indole-2-carboxylic acid-based NDM-1 inhibitor was modified to prepared previously undescribed analogues – indole-2-carboxamides bearing fragments derived from hydroxamic acid, glycine, and imino diacetic acid. To accomplish this, a method commonly used in peptide synthesis was adapted, employing the condensing agent PyBOP. The resulting compounds demonstrated the ability to inhibit NDM-1 in the micromolar concentration range (IC50 = 20–60 µM), highlighting the significant role of the substituent at position 2 in binding to the enzyme’s active site. It was shown that modifying the carboxyl group at position 2 of the indole core with functional fragments possessing intrinsic inhibitory activity leads to a reduction in the activity of the parent indole-2-carboxylic acid derivative.

About the authors

P. Tiuleanu

Mendeleev University of Chemical Technology

Moscow, Russia

I. V. Ivanov

Mendeleev University of Chemical Technology; Gause Institute of New Antibiotics

Moscow, Russia; Moscow, Russia

S. E. Solov'eva

Gause Institute of New Antibiotics

Moscow, Russia

I. P. Andreeva

Department of Chemistry, Lomonosov Moscow State University

Moscow, Russia

V. G. Grigorenko

Department of Chemistry, Lomonosov Moscow State University

Moscow, Russia

A. M. Egorov

Department of Chemistry, Lomonosov Moscow State University

Moscow, Russia

A. E. Shchekotikhin

Mendeleev University of Chemical Technology; Gause Institute of New Antibiotics

Email: shchekotikhin@mail.ru
Moscow, Russia; Moscow, Russia

References

  1. Van Boeckel T.P., Gandra S., Ashok A., Caudron Q., Grenfell B.T., Levin S.A., Laxminarayan R. Lancet Infect. Dis. 2014, 14, 742–750. https://doi.org/10.1016/S1473-3099(14)70780-7
  2. Ольсуфьева Е.Н., Щекотихин А.Е. Изв. РАН. Сер. хим. 2024, 73, 3523–3566. https://doi.org/10.1007/s11172-024-4466-5
  3. Ambler R.P. Philos Trans R Soc Lond B Biol Sci. 1980, 289, 321–331. https://doi.org/10.1098/rstb.1980.0049
  4. Marques D. de A.V., Machado S.E.F., Ebinuma V.C.S., Duarte C. de A.L., Converti A., Porto, A.L.F. Antibiotics. 2018, 7, 61. https://doi.org/10.3390/antibiotics7030061
  5. Linciano P., Cendron L., Gianquinto E., Spyrakis F., Tondi D. ACS Infect. Dis. 2019, 5, 9–34. https://doi.org/10.1021/acsinfecdis.8b00247
  6. Yong D., Toleman M.A., Giske C.G., Cho H.S., Sundman K., Lee K., Walsh T.R. Antimicrob Agents Chemother. 2009, 53, 5046–5054. https://doi.org/10.1128/AAC.00774-09
  7. Dortet L., Poirel L., Nordmann P. BioMed. Res. Int. 2014, 2014, 1–12. https://doi.org/10.1155/2014/249856
  8. Bahr G., Vitor-Horen L., Bethel C.R., Bonomo R.A., González L.J., Vila A.J. Antimicrob Agents Chemother. 2018, 62, e01849-17. https://doi.org/10.1128/AAC.01849-17
  9. Bhattacharjee A., Upadhyay S., Sen M. Recent Advances in Microbiology. Ed. S. P. Tiwari. Nova Science Publisher. 2013, 1, 101–124.
  10. Rolain J.M., Parola P., Cornaglia G. Clin. Microbiol. Infect. 2010, 16, 1699–1701. https://doi.org/10.1111/j.1469-0691.2010.03385.x
  11. Shkuratova T.S., Grigorenko V.G., Andreeva I.P., Litvinova V.A., Grammatikova N.E., Tikhomirov A.S., Egorov A.M., Shchekotikhin A.E. New derivatives of dipicolinic acid as metallo-β-lactamase NDM-1 inhibitors. Med. Chem. Res. 2025, 34, 219–227. https://doi.org/10.1007/s00044-024-03330-z
  12. Чарушин В.Н., Вербицкий Е.В., Чупахин О.Н., Воробьев Д.В., Грибанов П.С., Осипов С.Н., Иванов А.В., Мартыновская С.В., Сагитова Е.Ф., Дяченко В.Д., Дяченко И.В., Кривоколыско С.Г., Доценко В.В., Аксенов А.В., Аксенов Д.А., Аксенов Н.А., Ларин А.А., Ферштат Л.Л., Музалевский В.М., Ненайденко В.Г., Гулевская А.В., Пожарский А.Ф., Филатова Е.А., Беляева К.В., Трофимов Б.А., Балова И.А., Данилкина Н.А., Говди А.И., Тихомиров А.С., Щекотихин А.Е., Новиков М.С., Ростовский Н.В., Хлебников А.Ф., Климочкин Ю.Н., Леонова М.В., Ткаченко И.М., Мамедов В.А., Мамедова В.Л., Жукова Н.А., Семёнов В.Э., Синяшин О.Г., Борщев О.В., Лупоносов Ю.Н., Пономаренко С.А., Фисюк А.С., Костюченко А.С., Илькин В.Г., Березкина Т.В., Бакулев В.А., Газизов А.С., Загидуллин А.А., Карасик А.А., Кукушкин М.Е., Белоглазкина Е.К., Голанцов Н.Е., Феста А.А., Воскресенский Л.Г., Мошкин В.С., Буев Е.М., Сосновских В.Я., Миронова И.А., Постников П.С., Жданкин В.В., Юсубов М.С., Яременко И.А., Виль В.А., Крылов И.Б., Терентьев А.О., Горбунова Ю.Г., Мартынов А.Г., Цивадзе А.Ю., Стужин П.А., Иванова С.С., Койфман О.И., Буров О.Н., Клецкий М.Е., Курбатов С.В., Яровая О.И., Волчо К.П., Салахутдинов Н.Ф., Панова М.А., Бургарт Я.В., Салоутин В.И., Ситдикова А.Р., Щегравина Е.С., Фёдоров А.Ю. Усп. хим. 2024, 93, RCR5125. https://doi.org/10.59761/RCR5125
  13. Brem J., Panduwawala T., Hansen J.U., Hewitt J., Liepins E., Donets P., Espina L., Farley A.J.M., Shubin K., Campillos G.G., Kiuru P., Shishodia S., Krahn D., Leśniak R.K., Schmidt J., Calvopiña, K., Turrientes M.-C., Kavanagh M.E., Lubriks D., Hinchliffe P., Langley G.W., Aboklaish A.F., Eneroth A., Backlund M., Baran A.G., Nielsen E.I., Speake M., Kuka J., Robinson J., Grinberga S., Robinson L., McDonough M.A., Rydzik A.M., Leissing T.M., Jimenez-Castella-nos J.C., Avison M.B., Da Silva Pinto S., Pannifer A.D., Martjuga M., Widlake E., Priede M., Hopkins Navratilova I., Gniadkowski M., Belfrage A.K., Brandt P., Yli-Kauhaluoma J., Bacque E., Page M.G.P., Björkling F., Tyrrell J.M., Spencer J., Lang P.A., Baranczewski P., Cantón R., McElroy S.P., Jones P.S., Baquero F., Suna E., Morrison A., Walsh T.R., Schofield C.J. Nat. Chem. 2022, 14, 15–24. https://doi.org/10.1038/s41557-021-00831-x
  14. Wade N., Tehrani D.K.H.M.E., Brüchle N.C., Haren D.M.J. van, Mashayekhi D.V., Martin P.N.I. ChemMedChem. 2021, 16, 1651. https://doi.org/10.1002/cmdc.202100042
  15. Huckleby A.E., Saul J.G., Shin H., Desmarais S., Bokka A., Jeon J., Kim S.-K. IJMS. 2022, 23, 9163. https://doi.org/10.3390/ijms23169163
  16. Chen A.Y., Thomas C.A., Thomas P.W., Yang K., Cheng Z., Fast W., Crowder M.W., Cohen S.M. ChemMedChem. 2020, 15, 1272–1282. https://doi.org/10.1002/cmdc.202000123
  17. Brem J., Rydzik A.M., McDonough M.A., Schofield C.J., Morrison A., Hewitt J., Pannifer A., Jones P. WO2017093727A1, 2017.
  18. Tiuleanu P., Marenin I., Shchekotikhin A. Integrare prin cercetare și inovare.: Științe exacte și ale naturii. Ed. G. Stepanov. Chisinau: CEP USM. 2024, 659–665.
  19. Bebrone C., Moali C., Mahy F., Rival S., Docquier J.D., Rossolini G.M., Fastrez J., Pratt R.F., Frère J.-M., Galleni M. Antimicrob Agents Chemother. 2001, 45, 1868–1871. https://doi.org/10.1128/AAC.45.6.1868-1871.2001
  20. Григоренко В.Г., Рубцова М.Ю., Филатова Е.В., Андреева И.П., Мистрюкова Е.А., Егоров А.М. Вестн. МГУ. 2016, 71, 104–109. https://doi.org/10.3103/S0027131416020048

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).