Interaction of 3,6-Bis(2-Pyridyl)-1,2,4,5-Tetrazine and 3,4,5,6-Tetrabromo-1,2-Dehydrobenzene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of 3,6- bis(2-pyridyl)-substituted 1,2,4,5-tetrazine with 3,4,5,6-tetrabromo-1,2-dehydrobenzene obtained in situ from the corresponding anthranilic acid was studied for the first time. In this case, instead of the expected product — 5,6,7,8-tetrabromo-1,4-di(2-pyridyl)phthalazine — two alternative transformation products were found, namely 1,2,3,4-tetrabromo-6-methylnaphthalene and 3,6-di(2-pyridyl)pyridazine. The structure of the products was confirmed by physicochemical methods, including X-ray diffraction data. A possible mechanism for this interaction was proposed.

About the authors

S. E. Vatolina

Ural Federal University

Yekaterinburg, Russia

A. P. Krinochkin

Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: a.p.krinochkin@urfu.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

A. V. Rybakova

South Ural State University

Chelyabinsk, Russia

I. A. Khalymbadzha

Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

V. S. Gaviko

Institute of Physics of Metals, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

D. S. Kopchuk

Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

G. V. Zyryanov

Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

References

  1. Prokhorov A.M., Kozhevnikov D.N. Chem. Heterocycl. Compd. 2012, 48, 1153–1176. https://doi.org/10.1007/s10593-012-1117-9
  2. Branowska D. Molecules. 2005, 10, 274–278. https://doi.org/10.3390/10010274
  3. Zhu Z., Glinkerman C.M., Boger D.L. J. Am. Chem. Soc. 2020, 142, 20778–20787. https://doi.org/10.1021/jacs.0c09775
  4. Starnovskaya E.S., Kopchuk D.S., Khasanov A.F., Taniya O.S., Nikonov I.L., Valieva M.I., Pavlyuk D.E., Novikov A.S., Zyryanov G.V., Chupakhin O.N. Molecules. 2022, 27, art. № 6879. https://doi.org/10.3390/molecules27206879
  5. Wang S.-W., Guo W.-S., Wen L.-R., Li M. RSC Adv. 2014, 4, 59218–59220. https://doi.org/10.1039/C4RA11294F
  6. Taylor E.C., Macor J.E., Pont J.L. Tetrahedron. 1987, 43, 5145–5158. https://doi.org/10.1016/S0040-4020(01)87690-0
  7. Göckel U., Hartmannsgruber U., Steigel A., Sauer J. Tetrahedron Lett. 1980, 21, 599–602. https://doi.org/10.1016/S0040-4039(01)85567-2
  8. Soenen D.R., Zimpleman J.M., Boger D.L. J. Org. Chem. 2003. 68, 3593–3598. https://doi.org/10.1021/jo020713v
  9. Krinochkin A.P., Reddy G.M., Kopchuk D.S., Slepukhin P.A., Shtaitz Y.K., Khalymbadzha I.A., Kovalev I.S., Kim G.A., Ganebnykh I.N., Zyryanov G.V., Chupakhin O.N., Charushin V.N. Mendeleev Commun. 2021, 31, 542‒544. https://doi.org/10.1016/j.mencom.2021.07.035
  10. Rammohan A., Krinochkin A.P., Kopchuk D.S., Shtaitz Ya.K., Kovalev I.S., Savchuk M.I., Zyryanov G.V., Rusinov V.L., Chupakhin O.N. Russ. J. Org. Chem. 2022, 58, 175–179. https://doi.org/10.1134/S1070428022020026
  11. Rammohan A., Shtaitz Ya.K., Ladin E.D., Krinochkin A.P., Slepukhin P.A., Sharutin V.V., Sharafieva E.R., Pospelova T.A., Kopchuk D.S., Zyryanov G.V. Russ. J. Gen. Chem. 2023, 93, 263–267.. https://doi.org/10.1134/S1070363223020056
  12. Shtaitz Y.K., Rammohan A., Krinochkin A.P., Ladin E.D., Butorin I.I., Mochulskaya N.N., Kha-lymbadzha I.A., Slepukhin P.A., Shevyrin V.A., Kopchuk D.S., Zyryanov G.V., Chupakhin O.N. ChemistrySelect. 2023, 8, art. № e202300903. https://doi.org/10.1002/slct.202300903
  13. Rammohan A., Krinochkin A.P., Kopchuk D.S., Shtaitz Ya.K., Sharafieva E.R., Gaviko V.S., Zyryanov G.V., Chupakhin O.N. Russ. J. Org. Chem. 2023, 59, 1633–1636.. https://doi.org/10.1134/S1070428023090233
  14. Раммохан А., Ладин Е.Д., Штайц Я.К., Криночкин А.П., Халымбаджа И.А., Слепухин П.А., Копчук Д.С., Зырянов Г.В., Чарушин В.Н., Рану В.Ч. ЖОХ. 2024, 94, 209–215.
  15. Kopchuk D.S., Nikonov I.L., Khasanov A.F., Giri K., Santra S., Kovalev I.S., Nosova E.V., Gundala S., Venkatapuram P., Zyryanov G.V., Majee A., Chupakhin O.N. Org. Biomol. Chem. 2018, 16, 5119–5135. https://doi.org/10.1039/C8OB00847G
  16. Moseev T.D., Idrisov T.A., Lavrinchenko I.A., Krinochkin A.P., Kudryashova E.A., Kopchuk D.S., Varaksin M.V., Zyryanov G.V., Charushin V.N., Chupakhin O.N. Russ. Chem. Bull. 2023, 72, 2922–2926.. https://doi.org/10.1007/s11172-023-4102-9
  17. Kopchuk D.S., Nikonov I.L., Khasanov A.F., Gundala S., Krinochkin A.P., Slepukhin P.А., Zyryanov G.V., Venkatapuram P., Chupakhin O.N., Charushin V.N. Chem. Heterocycl. Compds. 2019, 55, 978–984. https://doi.org/10.1007/s10593-019-02565-8
  18. Gundala S., Guda M.R., Khasanov A.F., Kopchuk D.S., Krinochkin A.P., Santra S., Zyryanov G.V., Venkatapuram P., Garcia J.R., Charushin V.N. Mendeleev Commun. 2019, 29, 369–371. https://doi.org/10.1016/j.mencom.2019.07.002
  19. Benson S.C., Gross J.L., Snyder J.K. J. Org. Chem. 1990, 55, 3257–3269. https://doi.org/10.1021/jo00297a050
  20. Holzer W., Haider N. Product class 10: Phthalazines. In Y. Yamamoto (Ed.), Science of synthesis: Hetarenes and related ring systems., Six-membered hetarenes with two identical heteroatoms. 2004, 16, 315–372. Georg Thieme Verlag. https://doi.org/10.1055/sos-SD-016-0038
  21. Li J., Gao J., Xiong W.-W., Zhang Q. Tetrahedron Lett. 2014, 55, 4346–4349. https://doi.org/10.1016/j.tetlet.2014.06.033
  22. Margetic D., Murata Y., Komatsu K., Marinic Z. Helv. Chim. Acta. 2009, 92, 298–312. https://doi.org/10.1002/hlca.200800205
  23. Li J., Li P., Wu J., Gao J., Xiong W.-W., Zhang G., Zhao Y., Zhang Q. J. Org. Chem. 2014, 79, 4438−4445. https://doi.org/10.1021/jo500400d
  24. Suh S.-E., Barros S.A., Chenoweth D.M. Chem. Sci. 2015, 6, 5128−5132. https://doi.org/10.1039/c5sc01726b
  25. Suh S.-E., Chen S., Houk K.N., Chenoweth D.M. Chem. Sci. 2018, 9, 7688−7693. https://doi.org/10.1039/c8sc01796d
  26. Krinochkin A.P., Valieva M.I., Kudryashova E.A., Potapova S.S., Potapova A.P., Fatykhov R.F., Khalymbadzha I.A., Sharapov A.D., Kopchuk D.S., Kovalev I.S., Petrova V.E., Krivoshchapov N.V., Zyryanov G.V. Synthesis. 2025, 57, 812–819. https://doi.org/10.1055/a-2495-3296
  27. Ghumaan S., Sarker B., Patra S., Parimal K., van Slageren J., Fiedler J., Kaim W., Lahiri G.K. CCDC 256270: Experimental Crystal Structure Determination, 2005. https://doi.org/10.5517/cc8lns8
  28. Heaney H., Mason K.G., Sketchley J.M. J. Chem. Soc. C. 1971, 567–572. https://doi.org/10.1039/j39710000567
  29. Smith K., Al-Khalaf A.K.H., Akar K.B., Kari-uki B.M., El-Hiti G.A. ARKIVOC. 2022, v, 46–59. https://doi.org/10.24820/ark.5550190.p011.717
  30. Martinez C.R., Iverson B.L. Chem. Sci. 2012, 3, 2191–2201. https://doi.org/10.1039/c2sc20045g
  31. Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G. J. Phys. Chem. A. 2009, 113, 5806–5812. https://doi.org/10.1021/jp8111556
  32. CrysAlisPro, version 1.171.39.38a, Data Collection, Reduction and Correction Program, Rigaku Oxford Diffraction, 2017.
  33. Sheldrick G.M. Acta Crystallogr. A. 2015, A71, 3–8. https://doi.org/10.1107/S2053273314026370
  34. Sheldrick G.M. Acta Crystallogr. С. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218
  35. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. J. Appl. Cryst. 2009, 42, 339–341. https://doi.org/10.1107/S002188980804272

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).