Противовирусные свойства синтетических производных гистидина, содержащих в своей молекуле мембранотропные объёмные карбоциклы, в отношении вируса SARS-CoV-2 in vitro
- Авторы: Гараев Т.М.1, Гребенникова Т.В.1, Авдеева В.В.2, Лебедева В.В.1, Ларичев В.Ф.1
-
Учреждения:
- Федеральный научно-исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи
- Институт общей и неорганической химии имени Н.С. Курнакова Российской академии наук
- Выпуск: Том 68, № 1 (2023)
- Страницы: 18-25
- Раздел: ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ
- URL: https://ogarev-online.ru/0507-4088/article/view/125762
- DOI: https://doi.org/10.36233/0507-4088-147
- ID: 125762
Цитировать
Аннотация
Введение. В настоящее время разрабатывается целый ряд низкомолекулярных соединений в качестве потенциальных ингибиторов репликации CoVs, направленных на различные этапы репликационного цикла, такие как ингибиторы основной протеазы и аналоги нуклеозидов. Альтернативной белковой мишенью могут выступать виропорины.
Цель исследования – выявление противовирусных свойств производных гистидина с каркасными заместителями в отношении пандемического штамма коронавируса SARS-CoV-2 in vitro.
Материалы и методы. Получение соединения гистидина с аминоадамантаном и декагидро-клозо-декаборатным анионом [B10H10]2– проведено методами классического пептидного синтеза. Структура соединения подтверждена современными физико-химическими методами. Противовирусные свойства синтетических соединений изучены in vitro на монослое клеток Vero E6, инфицированных SARS-CoV-2 (штамм альфа), при одномоментном внесении соединений и вируса.
Результаты. Синтезированы производные аминокислоты гистидина с карбоциклами и кластерными анионами бора, и исследована их противовирусная активность в отношении коронавируса SARS-CoV-2 in vitro. На клеточных культурах показано, что производные гистидина с карбоциклами и кластерным анионом бора [B10H10]2– обладают способностью подавлять репликацию вируса. Также была показана возможность увеличения растворимости субстанции в водных средах за счёт образования хлоргидрата или натриевой соли.
Обсуждение. Соединение I 2HCl*H-His-Rim проявляло некоторый эффект подавления репликации вируса SARS-CoV-2 при вирусной нагрузке 100 доз и концентрации 31,2 мкг/мл. Наиболее очевидным объяснением противовирусного действия соединения I на угнетение репликации SARS-CoV-2 в эксперименте in vitro могут являться слабоосновные свойства, которые проявляет это соединение.
Заключение. Представленные синтетические соединения проявили умеренную противовирусную активность в отношении варианта коронавируса SARS-CoV-2. Полученные соединения могут быть использованы в качестве модельных структур для создания нового препарата прямого действия против современных штаммов коронавирусов.
Полный текст
Открыть статью на сайте журналаОб авторах
Т. М. Гараев
Федеральный научно-исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи
Автор, ответственный за переписку.
Email: tmgaraev@gmail.com
ORCID iD: 0000-0002-3651-5730
кандидат биологических наук, ведущий научный сотрудник лаборатории Молекулярной диагностики
Россия, 123098, г. МоскваТ. В. Гребенникова
Федеральный научно-исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи
Email: tmgaraev@gmail.com
ORCID iD: 0000-0002-6141-9361
член-корреспондент РАН, профессор, доктор биологических наук, руководитель лаборатории молекулярной диагностики
Россия, 123098, г. МоскваВ. В. Авдеева
Институт общей и неорганической химии имени Н.С. Курнакова Российской академии наук
Email: tmgaraev@gmail.com
ORCID iD: 0000-0002-0655-1052
доктор химических наук, ведущий научный сотрудник лаборатории химии лёгких элементов и кластеров
Россия, 119991, г. МоскваВ. В. Лебедева
Федеральный научно-исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи
Email: tmgaraev@gmail.com
ORCID iD: 0000-0002-3088-0403
научный сотрудник лаборатории молекулярной диагностики
Россия, 123098, г. МоскваВ. Ф. Ларичев
Федеральный научно-исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи
Email: tmgaraev@gmail.com
ORCID iD: 0000-0001-8262-5650
доктор медицинских наук, ведущий научный сотрудник лаборатории биологии и индикации арбовирусов
Россия, 123098, г. МоскваСписок литературы
- Ksiazek T.G., Erdman. D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003; 348(20): 1953–66. https://doi.org/10.1056/NEJMoa030781
- McIntosh K., Kapikian A.Z., Turner H.C., Hartley J.W., Parrott R.H., Chanock R.M. Seroepidemiologic studies of coronavirus infection in adults and children. Am. J. Epidemiol. 1970; 91(6): 585–92. https://doi.org/10.1093/oxfordjournals.aje.a121171
- Gaunt E.R., Hardie A., Claas E.C.J., Simmonds P., Templeton K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol. 2010; 48(8): 2940–7. https://doi.org/10.1128/JCM.00636-10
- Walsh E.E., Shin J.H., Falsey A.R. Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations. J. Infect. Dis. 2013; 208(10): 1634–42. https://doi.org/10.1093/infdis/jit393
- Yao N., Wang S.N., Lian J.Q., Sun Y.T., Zhang G.F., Kang W.Z., et al. Clinical characteristics and influencing factors of patients with novel coronavirus pneumonia combined with liver injury in Shaanxi region. Zhonghua Gan Zang Bing Za Zhi. 2020; 28(3): 234–9. https://doi.org/10.3760/cma.j.cn501113-20200226-00070 (in Chinese)
- Hu L.L., Wang W.J., Zhu Q.J., Yang L. Novel coronavirus pneumonia related liver injury: etiological analysis and treatment strategy. Zhonghua Gan Zang Bing Za Zhi. 2020; 28(2): 97–9. https://doi.org/10.3760/cma.j.issn.1007-3418.2020.02.001 (in Chinese)
- Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., et.al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16(10): 2346–53. https://doi.org/10.1088/0957-4484/16/10/059
- Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007; 3(1): 95–101. https://doi.org/10.1016/j.nano.2006.12.001
- Brown A.J., Won J.J., Graham R.L., Dinnon K.H. 3rd, Sims A.C., Feng J.Y., et al. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antirviral Res. 2019; 169: 104541. https://doi.org/10.1016/j.antiviral.2019.104541
- de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA. 2020; 117(12): 6771–6. https://doi.org/10.1073/pnas.1922083117
- Sheahan T.P., Sims A.C., Graham R.L., Menachery V.D., Gralinski L.E., Case J.B., et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017; 9(396): eaal3653. https://doi.org/10.1126/scitranslmed.aal3653
- de Wilde A.H., Jochmans D., Posthuma C.C., Zevenhoven-Dobbe J.C., van Nieuwkoop S., Bestebroer T.M., et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother. 2014; 58(8): 4875–84. https://doi.org/10.1128/aac.03011-14
- Choy K.T., Wong A.Y., Kaewpreedee P., Sia S.F., Chen D., Hui K.P.Y., et al. Remdesivir, Iopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir. Res. 2020; 178: 104786. https://doi.org/10.1016/j.antiviral.2020.104786
- Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020; 323(18): 1824–36. https://doi.org/10.1001/jama.2020.6019
- Mestres J. The target landscape of N4-hydroxycytidine based on its chemical neighborhood. bioRxiv. 2020. Preprint. https://doi.org/10.1101/2020.03.30.016485v1
- Zhu J., Zhang H., Lin Q., Lyu J., Lu L., Chen H., et al. Progress on SARS-CoV-2 3CLpro Inhibitors: Inspiration from SARS-CoV 3CLpro Peptidomimetics and Small-Molecule Anti-Inflammatory Compounds. Drug Des. Devel. Ther. 2022; 16: 1067–82. https://doi.org/10.2147/DDDT.S359009
- Zhou S., Hill C.S., Sarkar S., Tse L.V., Woodburn B.M.D., Schinazi R.F., et al. β-d-N4-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J. Infect. Dis. 2021; 224(3): 415–9. https://doi.org/10.1093/infdis/jiab247
- Parthasarathy K., Lu H., Surya W., Vararattanavech A., Pervushin K., Torres A. Expression and purification of coronavirus envelope proteins using a modified beta-barrel construct. Protein Expr. Purif. 2012; 85(1): 133–41. https://doi.org/10.1016/j.pep.2012.07.005
- Li Y., Surya W., Claudine S., Torres J. Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins. J. Biol. Chem. 2014; 289(18): 12535–49. https://doi.org/10.1074/jbc.m114.560094
- Cao Y., Yang R., Lee I., Zhang W., Sun J., Wang W., et al. Characterization of the SARS-CoV-2 E protein: sequence, structure, viroporin, and inhibitors. Protein Sci. 2020; 30(6): 1114–30. https://https://doi.org/10.1002/pro.4075
- Шибнев В.А., Дерябин П.Г., Гараев Т.М., Финогенова М.П., Ботиков А.Г., Мишин Д.В. Пептидные производные карбоциклов как ингибиторы функции виропоринов РНК-содержащих вирусов. Биоорганическая химия. 2017; 43(5): 491–500. https://doi.org/10.7868/S0132342317050153
- Garaev T.M., Odnovorov A.I., Grebennikova T.V., Finogenova M.P., Sadykova G.K., Prilipov A.G., et al. Studying the effect of amino acid substitutions in the M2 ion channel of the influenza virus on the antiviral activity of the aminoadamantane derivative in vitro and in silico. Adv. Pharm. Bull. 2021; 11(4): 700–11. https://doi.org/10.34172/apb.2021.079
- Avdeeva V.V., Garaev T.M., Breslav N.V., Burtseva E.I., Grebennikova T.V., Zhdanov A.P., et al. New type of RNA virus replication inhibitor based on decahydro-closo-decaborate anion containing amino acid ester pendant group. J. Biol. Inorg. Chem. 2022; 27(4-5): 421–9. https://doi.org/10.1007/s00775-022-01937-4
- Дерябин П.Г., Гараев Т.М., Финогенова М.П., Одноворов А.И. Оценка противовирусной активности соединения 2HCl*H-His-Rim в сравнении с противогриппозным препаратом «Арбидол» в отношении высоковирулентного штамма вируса гриппа A/duck/Novosibirsk/56/05 (H5N1) (Influenza A virus, Alphainfluenzavirus, Orthomyxoviridae). Вопросы вирусологии. 2019; 64(6): 268–73. https://doi.org/10.36233/0507-4088-2019-64-6-268-273
- Шибнев В.А., Гараев Т.М., Финогенова М.П., Шевченко Е.С., Бурцева Е.И. Производные 1-(1-адамантил)этиламина и их противовирусная активность. Патент РФ RU 2461544 С1; 2011.
- Гараев Т.М., Гребенникова Т.В., Авдеева В.В., Малинина Е.А., Кузнецов Н.Т., Жижин К.Ю. и др. Аминокислотное производное декагидро-клозо-декаборатного аниона и его противовирусная активность в отношении вируса гриппа А. Патент РФ RU 2749006 С1; 2020.
- Авдеева В.В., Гараев Т.М., Малинина Е.А., Жижин К.Ю., Кузнецов Н.Т. Пептидные производные карбоциклов как ингибиторы функции виропоринов РНК-содержащих вирусов. Биоорганическая химия. 2017; 43(5): 491–500. https://doi.org/10.7868/S0132342317050153
- Abreu G.E.A., Aguilar M.E.H., Covarrubias D.H., Durán F.R. Amantadine as a drug to mitigate the effects of COVID-19. Med Hypotheses. 2020; 140: 109755. https://doi.org/10.1016/j.mehy.2020.109755
- Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P., et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020; 71(15): 732–9. https://doi.org/10.1093/cid/ciaa237
- Wilson L., McKinlay C., Gage P., Ewart G. SARS Coronavirus E protein forms cation-selective ion channels. Virology. 2004; 330(1): 322–31. https://doi.org/10.1016/j.virol.2004.09.033
Дополнительные файлы
