Генетический полиморфизм сибирских изолятов коронавируса крупного рогатого скота (Coronaviridae: Betacoronavirus-1: Bovine-Like coronaviruses)

Обложка

Цитировать

Полный текст

Аннотация

Введение. Коронавирусы крупного рогатого скота (BCoV) – причина диарей, респираторных болезней телят и зимней дизентерии коров. Актуально изучение генетического разнообразия этих вирусов.

Цель работы изучение генетического полиморфизма изолятов BCoV, циркулирующих среди молочного скота в Сибири.

Материалы и методы. В работе использован биоматериал, взятый у падших или вынужденно забитых животных до начала исследования. Мишень для амплификации – нуклеотидные последовательности участков генов S и N. Филогенетические дендрограммы строили с использованием метода максимального правдоподобия в программе MEGA 7.0.

Результаты. По результатам ОТ-ПЦР геном вируса присутствовал в пробах биоматериала от телят с диарейным (16,3%) и респираторным (9,9%) синдромами. Первичные нуклеотидные последовательности участка гена S определили для 18, а гена N – для 12 изолятов. На основе гена S изоляты разделились на две клады с двумя подкладами в каждой. В первую подкладу первой клады (европейская линия) вошли 11 изолятов. Во вторую подкладу, включающую классические штаммы Квебек и Мёбус, исследуемые изоляты не входили. В первой подкладе второй клады (американо-азиатская линия) оказались 6 исследованных изолятов. Ко второй подкладе (смешанная линия) отнесли один изолят. На основе гена N получили две клады, одна из которых включала две подклады. В первую подкладу первой клады вошли 3 изолята (американо-азиатская линия), а во вторую – один (смешанная линия). Во второй кладе (смешанная) оказались 8 изолятов. Различий между диарейными и респираторными изолятами, а также зависимости от их географического местоположения не установили.

Заключение. Исследованная популяция изолятов BCoV носит неоднородный характер. Анализ нуклеотидных последовательностей является полезным инструментом для изучения молекулярной эпизоотологии коронавирусных инфекций и решения вопроса о применении вакцин в конкретном регионе.

Об авторах

Александр Гаврилович Глотов

ФГБУН «Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН)»

Email: glotov_vet@mail.ru
ORCID iD: 0000-0002-2006-0196
SPIN-код: 5020-6503

Институт экспериментальной ветеринарии Сибири и Дальнего Востока, доктор ветеринарных наук, профессор, заведующий лабораторией

Россия, 630501, Новосибирская обл., Новосибирский район, пос. Краснообск

Алексей Васильевич Нефедченко

ФГБУН «Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН)»

Email: homeovet@narod.ru
ORCID iD: 0000-0002-4181-4268
SPIN-код: 1583-5776

Институт экспериментальной ветеринарии Сибири и Дальнего Востока, доктор ветеринарных наук, доцент, ведущий научный сотрудник

Россия, 630501, Новосибирская обл., Новосибирский район, пос. Краснообск

Антон Геннадиевич Южаков

ФГБНУ «Федеральный научный центр Всероссийский научно-исследовательский институт экспериментальной ветеринарии им. К.И. Скрябина и Я.Р. Коваленко Российской академии наук»

Email: anton_oskol@mail.ru
ORCID iD: 0000-0002-0426-9678
SPIN-код: 4870-9610

кандидат биологических наук, заведующий лабораторией

Россия, 109428, Москва

Светлана Владимировна Котенева

ФГБУН «Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН)»

Email: koteneva-sv@mail.ru
ORCID iD: 0000-0003-2649-7505
SPIN-код: 7545-7206

Институт экспериментальной ветеринарии Сибири и Дальнего Востока, кандидат ветеринарных наук, ведущий научный сотрудник

Россия, 630501, Новосибирская обл., Новосибирский район, пос. Краснообск

Татьяна Ивановна Глотова

ФГБУН «Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН)»

Email: t-glotova@mail.ru
ORCID iD: 0000-0003-3538-8749
SPIN-код: 7488-5915

Институт экспериментальной ветеринарии Сибири и Дальнего Востока, доктор биологических наук, профессор, главный научный сотрудник

Россия, 630501, Новосибирская обл., Новосибирский район, пос. Краснообск

Алина Константиновна Комина

ФГБНУ «Федеральный научный центр Всероссийский научно-исследовательский институт экспериментальной ветеринарии им. К.И. Скрябина и Я.Р. Коваленко Российской академии наук»

Email: komina.a.k@yandex.ru
ORCID iD: 0000-0002-7173-5501
SPIN-код: 3699-2612

аспирант

Россия, 109428, Москва

Никита Юрьевич Красников

ФГБНУ «Федеральный научный центр Всероссийский научно-исследовательский институт экспериментальной ветеринарии им. К.И. Скрябина и Я.Р. Коваленко Российской академии наук»

Автор, ответственный за переписку.
Email: nick.krasnickoff2011@yandex.ru
ORCID iD: 0000-0001-8148-3080

аспирант

Россия, 109428, Москва

Список литературы

  1. International Committee on Taxonomy of Viruses (ICTV). New MSL including all taxonomy; updates since the 2018b release. Berlin; 2019. Available at: https://ictv.global
  2. Suzuki T., Otake Y., Uchimoto S., Hasebe A., Goto Y. Genomic characterization and phylogenetic classification of bovine coronaviruses through whole genome sequence analysis. Viruses. 2020; 12(2): 183. https://doi.org/10.3390/v12020183
  3. Masters P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006; 66: 193–292. https://doi.org/10.1016/S0065-3527(06)66005-3
  4. Saif L.J. Bovine respiratory coronavirus. Vet. Clin. North Am. Food Anim. Pract. 2010; 26(2): 349–64. https://doi.org/10.1016/j.cvfa.2010.04.005
  5. Vlasova A.N., Saif L.J. Bovine coronavirus and the associated diseases. Front. Vet. Sci. 2021; 8: 643220. https://doi.org/10.3389/fvets.2021.643220
  6. Liu L., Hagglund S., Hakhverdyan M., Alenius S., Larsen L.F., Belak S. Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene. J. Clin. Microbiol. 2006; 44(3): 957–60. https://doi.org/10.1128/JCM.44.3.957-960.2006
  7. Zhu Q., Li B., Sun D. Advances in bovine coronavirus epidemiology. Viruses. 2022; 14(5): 1109. https://doi.org/10.3390/v14051109
  8. Мищенко В.А., Думова В.В., Черных О.Ю., Киселев М.Ю., Мищенко А.В., Бакунов И.Н. и др. Распространение коронавируса крупного рогатого скота у жвачных животных. Ветеринария. 2010; (9): 18–21.
  9. Алипер Т.И. Актуальные инфекционные болезни крупного рогатого скота: Руководство. М.; 2021. https://doi.org/10.31016/viev-2021-6
  10. Орлянкин Б.Г., Власова А.Н., Мухин А.Н., Алипер Т.И. Коронавирусные инфекции животных: эпизоотология и патогенез. Ветеринария. 2022; (3): 3–13. https://doi.org/10.30896/0042-4846.2022.25.3.03-13
  11. Saif L.J. Bovine respiratory coronavirus. Vet. Clin. North Am. Food Anim. Pract. 2010; 26(2): 349–64. https://doi.org/10.1016/j.cvfa.2010.04.005
  12. Беспалова Т.Ю., Блохин А.А. Коронавирусы животных (обзор). Ветеринария. 2020; (9): 3–10. https://doi.org/10.30896/0042-4846.2020.23.9.03-10
  13. Глотов А.Г., Глотова Т.И. Коронавирусы жвачных животных. Сибирский вестник сельскохозяйственной науки. 2020; (3): 49–61. https://doi.org/10.26898/0370-8799-2020-3-5
  14. Liu X., Wu Q., Zhang Z. Global diversification and distribution of coronaviruses with furin cleavage sites. Front. Microbiol. 2021; 12: 649314. https://doi.org/10.3389/fmicb.2021.649314
  15. Islam A., Ferdous J., Islam S., Sayeed M.A., Dutta Choudhury S., Saha O., et al. Evolutionary dynamics and epidemiology of endemic and emerging coronaviruses in humans, domestic animals, and wildlife. Viruses. 2021; 13(10): 1908. https://doi.org/10.3390/v13101908
  16. Franzo G., Drigo M., Legnardi M., Grassi L., Pasotto D., Menandro M.L., et al. Bovine coronavirus: variability, evolution, and dispersal patterns of a no longer neglected betacoronavirus. Viruses. 2020; 12(11): 1285. https://doi.org/10.3390/v12111285
  17. Burimuah V., Sylverken A., Owusu M., El-Duah P., Yeboah R., Lamptey J., et al. Molecular-based cross-species evaluation of bovine coronavirus infection in cattle, sheep and goats in Ghana. BMC Vet. Res. 2020; 16(1): 405. https://doi.org/10.1186/s12917-020-02606-x
  18. Salem E., Dhanasekaran V., Cassard H., Hause B., Maman S., Meyer G., et al. Global transmission, spatial segregation, and recombination determine the long-term evolution and epidemiology of bovine coronaviruses. Viruses. 2020; 12(5): 534. https://doi.org/10.3390/v12050534
  19. Нефедченко А.В., Котенева С.В., Глотова Т.И., Глотов А.Г. Роль коронавируса в этиологии желудочно-кишечной и респираторной патологии телят на молочных комплексах. Ветеринария. 2022; (1): 18–23. https://doi.org/10.30896/0042-4846.2022.25.1.18-23
  20. Dall Agnol A.M., Lorenzetti E., Leme R.A., Ladeia W.A., Mainardi R.M., Bernardi A., et al. Severe outbreak of bovine neonatal diarrhea in a dairy calf rearing unit with multifactorial etiology. Braz. J. Microbiol. 2021; 52(4): 2547–53. https://doi.org/10.1007/s42770-021-00565-5
  21. Rahe M.C., Magstadt D.R., Groeltz-Thrush J., Gauger P.C., Zhang J., Schwartz K.J., et al. Bovine coronavirus in the lower respiratory tract of cattle with respiratory disease. J. Vet. Diagn. Invest. 2022; 34(3): 482–8. https://doi.org/ 10.1177/10406387221078583
  22. Soules K.R., Rahe M.C., Purtle L., Moeckly C., Stark P., Samson C., et al. Bovine coronavirus infects the respiratory tract of cattle challenged intranasally. Front. Vet. Sci. 2022; (9): 878240. https://doi.org/10.3389/fvets.2022.878240
  23. Blakebrough-Hall C., Hick P., Mahony T.J., González L.A. Factors associated with bovine respiratory disease case fatality in feedlot cattle. J. Anim. Sci. 2022; 100(1): skab361. https://doi.org/10.1093/jas/skab361
  24. Deepak Aly S.S., Love W.J., Blanchard P.C., Crossley B., Van Eenennaam A.L., Lehenbauer T.W. Etiology and risk factors for bovine respiratory disease in pre-weaned calves on California dairies and calf ranches. Prev. Vet. Med. 2021; 197: 105506. https://doi.org/10.1016/j.prevetmed.2021.105506
  25. Львов Д.К., Альховский С.В., Колобухина Л.В., Бурцева Е.И. Этиология эпидемической вспышки COVID-19 в г. Ухань (провинция Хубэй, Китайская Народная Республика), ассоциированной с вирусом 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, подрод Sarbecovirus): уроки эпидемии SARS-CoV. Вопросы вирусологии. 2020; 65(1): 6–15. https://doi.org/10.36233/0507-4088-2020-65-1-6-15
  26. Коромыслов Г.Ф., Авилов В.С., Гоголев М.М. Ротавирусная и коронавирусная инфекция телят. Вестник сельскохозяйственной науки. 1984; (7): 129–36.
  27. Decaro N., Elia G., Campolo M., Desario С., Mari V., Radogna A., et al. Detection of bovine coronavirus using a TaqMan-based real-time RT-PCR assay. J. Virol. Methods. 2008; 151(2): 167–71. https://doi.org/10.1016/j.jviromet.2008.05.01
  28. Zhao H., Liu J., Li Y., Yang C., Zhao S., Liu J., et al. Validation of reference genes for quantitative real-time PCR in Bovine PBMCs transformed and non-transformed by Theileria annulata. Korean J. Parasitol. 2016; 54(1): 39–46. https://doi.org/10.3347/kjp.2016.54.1.39
  29. Takiuchi E., Stipp D.T., Alfieri A.F., Alfieri A.A. Improved detection of bovine coronavirus N gene in faeces of calves infected naturally by a semi-nested PCR assay and an internal control. J. Virol. Methods. 2006; 131(2): 148–54. https://doi.org/10.1016/j.jviromet.2005.08.005
  30. Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016; 7(33): 1870–74. https://doi.org/10.1093/molbev/msw0544
  31. Lotfollahzadeh S., Madadgar O., Reza Mohebbi M., Reza Mokhber Dezfouli M., George W.D. Bovine coronavirus in neonatal calf diarrhoea in Iran. Vet. Med. Sci. 2020; 6(4): 686–94. https://doi.org/10.1002/vms3.277
  32. Kanno T., Hatama S., Ishihara R., Uchida I. Molecular analysis of the S glycoprotein gene of bovine coronaviruses isolated in Japan from 1999 to 2006. J. Gen. Virol. 2007; 88(Pt. 4): 1218–24. https://doi.org/10.1099/vir.0.82635-0
  33. Amicone M., Borges V., Alves M.J., Isidro J., Zé-Zé L., Duarte S., et al. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol. Med. Public Health. 2022; 10(1): 142–55. https://doi.org/10.1093/emph/eoac010
  34. Gunn L., Collins P.J. O’Connell M.J., O’Shea H. Phylogenetic investigation of enteric bovine coronavirus in Ireland reveals partitioning between European and global strains. Irish Vet. J. 2015; 68: 31. https://doi.org/10.1186/s13620-015-0060-33
  35. Bok M., Miño S., Rodriguez D., Badaracco A., Nuñes I., Souza S.P., et al. Molecular and antigenic characterization of bovine Coronavirus circulating in Argentinean cattle during 1994–2010. Vet. Microbiol. 2015; 181(3-4): 221–9. https://doi.org/10.1016/j.vetmic.2015.10.017
  36. De Mira Fernandes A., Brandão P.E., Dos Santos Lima M., de Souza Nunes Martins M., da Silva T.G., da Silva Cardoso Pinto V., et al. Genetic diversity of BCoV in Brazilian cattle herds. Vet. Med. Sci. 2018; 4(3): 183–9. https://doi.org/10.1002/vms3.102
  37. Zhu Q., Su M., Li Z., Wang X., Qi S., Zhao F., et al. Epidemiological survey and genetic diversity of bovine coronavirus in Northeast China. Virus Res. 2022; 308: 198632. https://doi.org/10.1016/j.virusres.2021.198632
  38. Castells M., Giannitti F., Caffarena R.D., Casaux M.L., Schild C., Castells D., et al. Bovine coronavirus in Uruguay: genetic diversity, risk factors and transboundary introductions from neighboring countries. Arch. Virol. 2019; 164(11): 2715–24. https://doi.org/10.1007/s00705-019-04384-w

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Филогенетическая дендрограмма, построенная на основе участка последовательности гена гликопротеина S коронавируса крупного рогатого скота. Бутстрэп-поддержка указана около каждого узла дендрограммы. Штаммы, полученные в данной работе, отмечены чёрным кругом (●). Референтные штаммы отмечены чёрным квадратом (■). Штаммы из базы данных GenBank, присутствующие на рис. 1 и 2, отмечены белым треугольником (∆). Для штаммов из базы данных GenBank указаны название и идентификационный номер. Номер клады указан справа от квадратной скобки.

Скачать (715KB)
3. Рис. 2. Филогенетическая дендрограмма, построенная на основе участка последовательности гена нуклеокапсида N коронавируса крупного рогатого скота. Бутстрэп-поддержка указана около каждого узла дендрограммы. Штаммы, полученные в данной работе, отмечены чёрным кругом (●). Референтные штаммы отмечены чёрным квадратом (■). Штаммы из базы данных GenBank, присутствующие на рис. 1 и 2, отмечены, белым треугольником (∆). Для штаммов из базы данных GenBank указаны название и идентификационный номер. Номер клады указан справа от квадратной скобки.

Скачать (696KB)

© Глотов А.Г., Нефедченко А.В., Южаков А.Г., Котенева С.В., Глотова Т.И., Комина А.К., Красников Н.Ю., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».