Genetic diversity of Siberian bovine coronavirus isolates (Coronaviridae: Coronavirinae: Betacoronavirus-1: Bovine-Like coronaviruses)

Cover Page

Cite item

Full Text

Abstract

Introduction. Bovine coronaviruses (BCoVs) are causative agents of diarrhea, respiratory diseases in calves and winter cow dysentery. The study of genetic diversity of these viruses is topical issue.

The purpose of the research is studying the genetic diversity of BCoV isolates circulating among dairy cattle in Siberia.

Materials and methods. Specimens used in this study were collected from animals that died or was forcedly slaughtered before the start of the study. The target for amplification were nucleotide sequences of S and N gene regions.

Results. Based on the results of RT-PCR testing, virus genome was present in 16.3% of samples from calves with diarrheal syndrome and in 9.9% with respiratory syndrome. The nucleotide sequences of S gene region were determined for 18 isolates, and N gene sequences - for 12 isolates. Based on S gene, isolates were divided into two clades each containing two subclades. First subclade of first clade (European line) included 11 isolates. Second one included classic strains Quebec and Mebus, strains from Europe, USA and Korea, but none of sequences from this study belonged to this subclade. 6 isolates belonged to first subclade of second clade (American-Asian line). Second subclade (mixed line) included one isolate. N gene sequences formed two clades, one of them included two subclades. First subclade included 3 isolates (American-Asian line), and second subclade (mixed) included one isolate. Second clade (mixed) included 8 sequences. No differences in phylogenetic grouping between intestinal and respiratory isolates, as well as according to their geographic origin were identified.

Conclusion. The studied population of BCoV isolates is heterogeneous. Nucleotide sequence analysis is a useful tool for studying molecular epidemiology of BCoV. It can be beneficial for choice of vaccines to be used in a particular geographic region.

About the authors

Alexander G. Glotov

Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science

Email: glotov_vet@mail.ru
ORCID iD: 0000-0002-2006-0196
SPIN-code: 5020-6503

Institute of Experimentally Veterinary Medicine of Siberia and Far East, Doctor of Veterinary Sciences, Professor, Head of Laboratory

Russian Federation, Krasnoobsk, Novosibirsk Region, 630501

Aleksej V. Nefedchenko

Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science

Email: homeovet@narod.ru
ORCID iD: 0000-0002-4181-4268
SPIN-code: 1583-5776

Institute of Experimentally Veterinary Medicine of Siberia and Far East, Doctor of Veterinary Sciences, Associate Professor, Leading Researcher

Russian Federation, Krasnoobsk, Novosibirsk Region, 630501,

Anton G. Yuzhakov

Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences

Email: anton_oskol@mail.ru
ORCID iD: 0000-0002-0426-9678
SPIN-code: 4870-9610

Candidate of Biological Sciences, Head of Laboratory

Russian Federation, 109428, Moscow

Svetlana V. Koteneva

Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science

Email: koteneva-sv@mail.ru
ORCID iD: 0000-0003-2649-7505
SPIN-code: 7545-7206

Institute of Experimentally Veterinary Medicine of Siberia and Far East, Candidate of Veterinary Sciences, Leading Researcher

Russian Federation, Krasnoobsk, Novosibirsk Region, 630501

Tatyana I. Glotova

Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science

Email: t-glotova@mail.ru
ORCID iD: 0000-0003-3538-8749
SPIN-code: 7488-5915

Institute of Experimentally Veterinary Medicine of Siberia and Far East, Doctor of Biological Sciences, Professor, Principal Researcher

Russian Federation, Krasnoobsk, Novosibirsk Region, 630501

Alina K. Komina

Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences

Email: komina.a.k@yandex.ru
ORCID iD: 0000-0002-7173-5501
SPIN-code: 3699-2612

graduate student

Russian Federation, 109428, Moscow

Nikita Yu. Krasnikov

Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences

Author for correspondence.
Email: nick.krasnickoff2011@yandex.ru
ORCID iD: 0000-0001-8148-3080

graduate student

Russian Federation, 109428, Moscow

References

  1. International Committee on Taxonomy of Viruses (ICTV). New MSL including all taxonomy; updates since the 2018b release. Berlin; 2019. Available at: https://ictv.global
  2. Suzuki T., Otake Y., Uchimoto S., Hasebe A., Goto Y. Genomic characterization and phylogenetic classification of bovine coronaviruses through whole genome sequence analysis. Viruses. 2020; 12(2): 183. https://doi.org/10.3390/v12020183
  3. Masters P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006; 66: 193–292. https://doi.org/10.1016/S0065-3527(06)66005-3
  4. Saif L.J. Bovine respiratory coronavirus. Vet. Clin. North Am. Food Anim. Pract. 2010; 26(2): 349–64. https://doi.org/10.1016/j.cvfa.2010.04.005
  5. Vlasova A.N., Saif L.J. Bovine coronavirus and the associated diseases. Front. Vet. Sci. 2021; 8: 643220. https://doi.org/10.3389/fvets.2021.643220
  6. Liu L., Hagglund S., Hakhverdyan M., Alenius S., Larsen L.F., Belak S. Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene. J. Clin. Microbiol. 2006; 44(3): 957–60. https://doi.org/10.1128/JCM.44.3.957-960.2006
  7. Zhu Q., Li B., Sun D. Advances in bovine coronavirus epidemiology. Viruses. 2022; 14(5): 1109. https://doi.org/10.3390/v14051109
  8. Mishchenko V.A., Dumova V.V., Chernykh O.Yu., Kiselev M.Yu., Mishchenko A.V., Bakunov I.N., et al. Bovine coronavirus distribution in ruminants. Veterinariya. 2010; (9): 18–21. (in Russian)
  9. Aliper T.I. Actual Infectious Diseases of Cattle: Guideline [Aktual’nye infektsionnye bolezni krupnogo rogatogo skota: Rukovodstvo]. Moscow; 2021. https://doi.org/10.31016/viev-2021-6 (in Russian)
  10. Orlyankin B.G., Vlasova A.N., Mukhin A.N., Aliper T.I. Coronavirus infections in animals: epizootology and pathogenesis. Veterinariya. 2022; (3): 3–13. https://doi.org/10.30896/0042-4846.2022.25.3.03-13 (in Russian)
  11. Faustino R., Faria M., Teixeira M., Palavra F., Sargento P., do Céu Costa M. Systematic review and meta-analysis of the prevalence of coronavirus: One health approach for a global strategy. One Health. 2022; 14: 100383. https://doi.org/ 10.1016/j.onehlt.2022.100383
  12. Bespalova T.Yu., Blokhin A.A. Coronaviruses of animals (review). Veterinariya. 2020; (9): 3–10. https://doi.org/10.30896/0042-4846.2020.23.9.03-10 (in Russian)
  13. Glotov A.G., Glotova T.I. Coronaviruses in ruminants. Sibirskiy vestnik sel’skokhozyaystvennoy nauki. 2020; (3): 49–61. https://doi.org/10.26898/0370-8799-2020-3-5 (in Russian)
  14. Liu X., Wu Q., Zhang Z. Global diversification and distribution of coronaviruses with furin cleavage sites. Front. Microbiol. 2021; 12: 649314. https://doi.org/10.3389/fmicb.2021.649314
  15. Islam A., Ferdous J., Islam S., Sayeed M.A., Dutta Choudhury S., Saha O., et al. Evolutionary dynamics and epidemiology of endemic and emerging coronaviruses in humans, domestic animals, and wildlife. Viruses. 2021; 13(10): 1908. https://doi.org/10.3390/v13101908
  16. Franzo G., Drigo M., Legnardi M., Grassi L., Pasotto D., Menandro M.L., et al. Bovine coronavirus: variability, evolution, and dispersal patterns of a no longer neglected betacoronavirus. Viruses. 2020; 12(11): 1285. https://doi.org/10.3390/v12111285
  17. Burimuah V., Sylverken A., Owusu M., El-Duah P., Yeboah R., Lamptey J., et al. Molecular-based cross-species evaluation of bovine coronavirus infection in cattle, sheep and goats in Ghana. BMC Vet. Res. 2020; 16(1): 405. https://doi.org/10.1186/s12917-020-02606-x
  18. Salem E., Dhanasekaran V., Cassard H., Hause B., Maman S., Meyer G., et al. Global transmission, spatial segregation, and recombination determine the long-term evolution and epidemiology of bovine coronaviruses. Viruses. 2020; 12(5): 534. https://doi.org/10.3390/v12050534
  19. Nefedchenko A.V., Koteneva S.V., Glotova T.I., Glotov A.G. The role of bovine coronavirus in the etiology of gastrointestinal and respiratory diseases of calves in big dairy farms. Veterinariya. 2022; (1): 18–23. https://doi.org/10.30896/0042-4846.2022.25.1.18-23 (in Russian)
  20. Dall Agnol A.M., Lorenzetti E., Leme R.A., Ladeia W.A., Mainardi R.M., Bernardi A., et al. Severe outbreak of bovine neonatal diarrhea in a dairy calf rearing unit with multifactorial etiology. Braz. J. Microbiol. 2021; 52(4): 2547–53. https://doi.org/10.1007/s42770-021-00565-5
  21. Rahe M.C., Magstadt D.R., Groeltz-Thrush J., Gauger P.C., Zhang J., Schwartz K.J., et al. Bovine coronavirus in the lower respiratory tract of cattle with respiratory disease. J. Vet. Diagn. Invest. 2022; 34(3): 482–8. https://doi.org/ 10.1177/10406387221078583
  22. Soules K.R., Rahe M.C., Purtle L., Moeckly C., Stark P., Samson C., et al. Bovine coronavirus infects the respiratory tract of cattle challenged intranasally. Front. Vet. Sci. 2022; (9): 878240. https://doi.org/10.3389/fvets.2022.878240
  23. Blakebrough-Hall C., Hick P., Mahony T.J., González L.A. Factors associated with bovine respiratory disease case fatality in feedlot cattle. J. Anim. Sci. 2022; 100(1): skab361. https://doi.org/10.1093/jas/skab361
  24. Deepak Aly S.S., Love W.J., Blanchard P.C., Crossley B., Van Eenennaam A.L., Lehenbauer T.W. Etiology and risk factors for bovine respiratory disease in pre-weaned calves on California dairies and calf ranches. Prev. Vet. Med. 2021; 197: 105506. https://doi.org/10.1016/j.prevetmed.2021.105506
  25. L’vov D.K., Al’khovskiy S.V., Kolobukhina L.V., Burtseva E.I. Etiology of epidemic outbreaks covid-19 in Wuhan, Hubei province, Chinese people republic associated with 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, subgenus Sarbecovirus): lessons of SARS-COV outbreak. Voprosy virusologii. 2020; 65(1): 6–15. https://doi.org/10.36233/0507-4088-2020-65-1-6-15 (in Russian)
  26. Koromyslov G.F., Avilov V.S., Gogolev M.M. Rotavirus and coronavirus infection of calves. Vestnik sel’skokhozyaystvennoy nauki. 1984; (7): 129–36. (in Russian)
  27. Decaro N., Elia G., Campolo M., Desario С., Mari V., Radogna A., et al. Detection of bovine coronavirus using a TaqMan-based real-time RT-PCR assay. J. Virol. Methods. 2008; 151(2): 167–71. https://doi.org/10.1016/j.jviromet.2008.05.01
  28. Zhao H., Liu J., Li Y., Yang C., Zhao S., Liu J., et al. Validation of reference genes for quantitative real-time PCR in Bovine PBMCs transformed and non-transformed by Theileria annulata. Korean J. Parasitol. 2016; 54(1): 39–46. https://doi.org/10.3347/kjp.2016.54.1.39
  29. Takiuchi E., Stipp D.T., Alfieri A.F., Alfieri A.A. Improved detection of bovine coronavirus N gene in faeces of calves infected naturally by a semi-nested PCR assay and an internal control. J. Virol. Methods. 2006; 131(2): 148–54. https://doi.org/10.1016/j.jviromet.2005.08.005
  30. Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016; 7(33): 1870–74. https://doi.org/10.1093/molbev/msw0544
  31. Lotfollahzadeh S., Madadgar O., Reza Mohebbi M., Reza Mokhber Dezfouli M., George W.D. Bovine coronavirus in neonatal calf diarrhoea in Iran. Vet. Med. Sci. 2020; 6(4): 686–94. https://doi.org/10.1002/vms3.277
  32. Kanno T., Hatama S., Ishihara R., Uchida I. Molecular analysis of the S glycoprotein gene of bovine coronaviruses isolated in Japan from 1999 to 2006. J. Gen. Virol. 2007; 88(Pt. 4): 1218–24. https://doi.org/10.1099/vir.0.82635-0
  33. Amicone M., Borges V., Alves M.J., Isidro J., Zé-Zé L., Duarte S., et al. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol. Med. Public Health. 2022; 10(1): 142–55. https://doi.org/10.1093/emph/eoac010
  34. Gunn L., Collins P.J. O’Connell M.J., O’Shea H. Phylogenetic investigation of enteric bovine coronavirus in Ireland reveals partitioning between European and global strains. Irish Vet. J. 2015; 68: 31. https://doi.org/10.1186/s13620-015-0060-33
  35. Bok M., Miño S., Rodriguez D., Badaracco A., Nuñes I., Souza S.P., et al. Molecular and antigenic characterization of bovine Coronavirus circulating in Argentinean cattle during 1994–2010. Vet. Microbiol. 2015; 181(3-4): 221–9. https://doi.org/10.1016/j.vetmic.2015.10.017
  36. De Mira Fernandes A., Brandão P.E., Dos Santos Lima M., de Souza Nunes Martins M., da Silva T.G., da Silva Cardoso Pinto V., et al. Genetic diversity of BCoV in Brazilian cattle herds. Vet. Med. Sci. 2018; 4(3): 183–9. https://doi.org/10.1002/vms3.102
  37. Zhu Q., Su M., Li Z., Wang X., Qi S., Zhao F., et al. Epidemiological survey and genetic diversity of bovine coronavirus in Northeast China. Virus Res. 2022; 308: 198632. https://doi.org/10.1016/j.virusres.2021.198632
  38. Castells M., Giannitti F., Caffarena R.D., Casaux M.L., Schild C., Castells D., et al. Bovine coronavirus in Uruguay: genetic diversity, risk factors and transboundary introductions from neighboring countries. Arch. Virol. 2019; 164(11): 2715–24. https://doi.org/10.1007/s00705-019-04384-w

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phylogenetic dendrogram based on the bovine coronavirus glycoprotein S gene sequence region. Bootstrap support is indicated near each node of the dendrogram. The strains obtained in this work are marked with a black circle (●). Reference strains are marked with a black square (■). Strains from the GenBank database present in fig. 1 and 2 are marked with a white triangle (∆). For strains from the GenBank database, the name and identification number are indicated. The clade numbers are indicated to the right of the square brackets.

Download (715KB)
3. Fig. 2. Phylogenetic dendrogram based on the bovine coronavirus nucleocapsid N gene sequence region. Bootstrap support is indicated near each node of the dendrogram. The strains obtained in this work are marked with a black circle (●). Reference strains are marked with a black square (■). Strains from the GenBank database present in fig. 1 and 2 are marked with a white triangle (∆). For strains from the GenBank database, the name and identification number are indicated. The clade numbers are indicated to the right of the square brackets.

Download (696KB)

Copyright (c) 2022 Glotov A.G., Nefedchenko A.V., Yuzhakov A.G., Koteneva S.V., Glotova T.I., Komina A.K., Krasnikov N.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».