Genetic diversity of Siberian bovine coronavirus isolates (Coronaviridae: Coronavirinae: Betacoronavirus-1: Bovine-Like coronaviruses)
- Authors: Glotov A.G.1, Nefedchenko A.V.1, Yuzhakov A.G.2, Koteneva S.V.1, Glotova T.I.1, Komina A.K.2, Krasnikov N.Y.2
-
Affiliations:
- Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
- Issue: Vol 67, No 6 (2022)
- Pages: 465-474
- Section: ORIGINAL RESEARCH
- URL: https://ogarev-online.ru/0507-4088/article/view/125753
- DOI: https://doi.org/10.36233/0507-4088-141
- ID: 125753
Cite item
Full Text
Abstract
Introduction. Bovine coronaviruses (BCoVs) are causative agents of diarrhea, respiratory diseases in calves and winter cow dysentery. The study of genetic diversity of these viruses is topical issue.
The purpose of the research is studying the genetic diversity of BCoV isolates circulating among dairy cattle in Siberia.
Materials and methods. Specimens used in this study were collected from animals that died or was forcedly slaughtered before the start of the study. The target for amplification were nucleotide sequences of S and N gene regions.
Results. Based on the results of RT-PCR testing, virus genome was present in 16.3% of samples from calves with diarrheal syndrome and in 9.9% with respiratory syndrome. The nucleotide sequences of S gene region were determined for 18 isolates, and N gene sequences - for 12 isolates. Based on S gene, isolates were divided into two clades each containing two subclades. First subclade of first clade (European line) included 11 isolates. Second one included classic strains Quebec and Mebus, strains from Europe, USA and Korea, but none of sequences from this study belonged to this subclade. 6 isolates belonged to first subclade of second clade (American-Asian line). Second subclade (mixed line) included one isolate. N gene sequences formed two clades, one of them included two subclades. First subclade included 3 isolates (American-Asian line), and second subclade (mixed) included one isolate. Second clade (mixed) included 8 sequences. No differences in phylogenetic grouping between intestinal and respiratory isolates, as well as according to their geographic origin were identified.
Conclusion. The studied population of BCoV isolates is heterogeneous. Nucleotide sequence analysis is a useful tool for studying molecular epidemiology of BCoV. It can be beneficial for choice of vaccines to be used in a particular geographic region.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Alexander G. Glotov
Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science
Email: glotov_vet@mail.ru
ORCID iD: 0000-0002-2006-0196
SPIN-code: 5020-6503
Institute of Experimentally Veterinary Medicine of Siberia and Far East, Doctor of Veterinary Sciences, Professor, Head of Laboratory
Russian Federation, Krasnoobsk, Novosibirsk Region, 630501Aleksej V. Nefedchenko
Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science
Email: homeovet@narod.ru
ORCID iD: 0000-0002-4181-4268
SPIN-code: 1583-5776
Institute of Experimentally Veterinary Medicine of Siberia and Far East, Doctor of Veterinary Sciences, Associate Professor, Leading Researcher
Russian Federation, Krasnoobsk, Novosibirsk Region, 630501,Anton G. Yuzhakov
Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
Email: anton_oskol@mail.ru
ORCID iD: 0000-0002-0426-9678
SPIN-code: 4870-9610
Candidate of Biological Sciences, Head of Laboratory
Russian Federation, 109428, MoscowSvetlana V. Koteneva
Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science
Email: koteneva-sv@mail.ru
ORCID iD: 0000-0003-2649-7505
SPIN-code: 7545-7206
Institute of Experimentally Veterinary Medicine of Siberia and Far East, Candidate of Veterinary Sciences, Leading Researcher
Russian Federation, Krasnoobsk, Novosibirsk Region, 630501Tatyana I. Glotova
Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science
Email: t-glotova@mail.ru
ORCID iD: 0000-0003-3538-8749
SPIN-code: 7488-5915
Institute of Experimentally Veterinary Medicine of Siberia and Far East, Doctor of Biological Sciences, Professor, Principal Researcher
Russian Federation, Krasnoobsk, Novosibirsk Region, 630501Alina K. Komina
Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
Email: komina.a.k@yandex.ru
ORCID iD: 0000-0002-7173-5501
SPIN-code: 3699-2612
graduate student
Russian Federation, 109428, MoscowNikita Yu. Krasnikov
Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
Author for correspondence.
Email: nick.krasnickoff2011@yandex.ru
ORCID iD: 0000-0001-8148-3080
graduate student
Russian Federation, 109428, MoscowReferences
- International Committee on Taxonomy of Viruses (ICTV). New MSL including all taxonomy; updates since the 2018b release. Berlin; 2019. Available at: https://ictv.global
- Suzuki T., Otake Y., Uchimoto S., Hasebe A., Goto Y. Genomic characterization and phylogenetic classification of bovine coronaviruses through whole genome sequence analysis. Viruses. 2020; 12(2): 183. https://doi.org/10.3390/v12020183
- Masters P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006; 66: 193–292. https://doi.org/10.1016/S0065-3527(06)66005-3
- Saif L.J. Bovine respiratory coronavirus. Vet. Clin. North Am. Food Anim. Pract. 2010; 26(2): 349–64. https://doi.org/10.1016/j.cvfa.2010.04.005
- Vlasova A.N., Saif L.J. Bovine coronavirus and the associated diseases. Front. Vet. Sci. 2021; 8: 643220. https://doi.org/10.3389/fvets.2021.643220
- Liu L., Hagglund S., Hakhverdyan M., Alenius S., Larsen L.F., Belak S. Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene. J. Clin. Microbiol. 2006; 44(3): 957–60. https://doi.org/10.1128/JCM.44.3.957-960.2006
- Zhu Q., Li B., Sun D. Advances in bovine coronavirus epidemiology. Viruses. 2022; 14(5): 1109. https://doi.org/10.3390/v14051109
- Mishchenko V.A., Dumova V.V., Chernykh O.Yu., Kiselev M.Yu., Mishchenko A.V., Bakunov I.N., et al. Bovine coronavirus distribution in ruminants. Veterinariya. 2010; (9): 18–21. (in Russian)
- Aliper T.I. Actual Infectious Diseases of Cattle: Guideline [Aktual’nye infektsionnye bolezni krupnogo rogatogo skota: Rukovodstvo]. Moscow; 2021. https://doi.org/10.31016/viev-2021-6 (in Russian)
- Orlyankin B.G., Vlasova A.N., Mukhin A.N., Aliper T.I. Coronavirus infections in animals: epizootology and pathogenesis. Veterinariya. 2022; (3): 3–13. https://doi.org/10.30896/0042-4846.2022.25.3.03-13 (in Russian)
- Faustino R., Faria M., Teixeira M., Palavra F., Sargento P., do Céu Costa M. Systematic review and meta-analysis of the prevalence of coronavirus: One health approach for a global strategy. One Health. 2022; 14: 100383. https://doi.org/ 10.1016/j.onehlt.2022.100383
- Bespalova T.Yu., Blokhin A.A. Coronaviruses of animals (review). Veterinariya. 2020; (9): 3–10. https://doi.org/10.30896/0042-4846.2020.23.9.03-10 (in Russian)
- Glotov A.G., Glotova T.I. Coronaviruses in ruminants. Sibirskiy vestnik sel’skokhozyaystvennoy nauki. 2020; (3): 49–61. https://doi.org/10.26898/0370-8799-2020-3-5 (in Russian)
- Liu X., Wu Q., Zhang Z. Global diversification and distribution of coronaviruses with furin cleavage sites. Front. Microbiol. 2021; 12: 649314. https://doi.org/10.3389/fmicb.2021.649314
- Islam A., Ferdous J., Islam S., Sayeed M.A., Dutta Choudhury S., Saha O., et al. Evolutionary dynamics and epidemiology of endemic and emerging coronaviruses in humans, domestic animals, and wildlife. Viruses. 2021; 13(10): 1908. https://doi.org/10.3390/v13101908
- Franzo G., Drigo M., Legnardi M., Grassi L., Pasotto D., Menandro M.L., et al. Bovine coronavirus: variability, evolution, and dispersal patterns of a no longer neglected betacoronavirus. Viruses. 2020; 12(11): 1285. https://doi.org/10.3390/v12111285
- Burimuah V., Sylverken A., Owusu M., El-Duah P., Yeboah R., Lamptey J., et al. Molecular-based cross-species evaluation of bovine coronavirus infection in cattle, sheep and goats in Ghana. BMC Vet. Res. 2020; 16(1): 405. https://doi.org/10.1186/s12917-020-02606-x
- Salem E., Dhanasekaran V., Cassard H., Hause B., Maman S., Meyer G., et al. Global transmission, spatial segregation, and recombination determine the long-term evolution and epidemiology of bovine coronaviruses. Viruses. 2020; 12(5): 534. https://doi.org/10.3390/v12050534
- Nefedchenko A.V., Koteneva S.V., Glotova T.I., Glotov A.G. The role of bovine coronavirus in the etiology of gastrointestinal and respiratory diseases of calves in big dairy farms. Veterinariya. 2022; (1): 18–23. https://doi.org/10.30896/0042-4846.2022.25.1.18-23 (in Russian)
- Dall Agnol A.M., Lorenzetti E., Leme R.A., Ladeia W.A., Mainardi R.M., Bernardi A., et al. Severe outbreak of bovine neonatal diarrhea in a dairy calf rearing unit with multifactorial etiology. Braz. J. Microbiol. 2021; 52(4): 2547–53. https://doi.org/10.1007/s42770-021-00565-5
- Rahe M.C., Magstadt D.R., Groeltz-Thrush J., Gauger P.C., Zhang J., Schwartz K.J., et al. Bovine coronavirus in the lower respiratory tract of cattle with respiratory disease. J. Vet. Diagn. Invest. 2022; 34(3): 482–8. https://doi.org/ 10.1177/10406387221078583
- Soules K.R., Rahe M.C., Purtle L., Moeckly C., Stark P., Samson C., et al. Bovine coronavirus infects the respiratory tract of cattle challenged intranasally. Front. Vet. Sci. 2022; (9): 878240. https://doi.org/10.3389/fvets.2022.878240
- Blakebrough-Hall C., Hick P., Mahony T.J., González L.A. Factors associated with bovine respiratory disease case fatality in feedlot cattle. J. Anim. Sci. 2022; 100(1): skab361. https://doi.org/10.1093/jas/skab361
- Deepak Aly S.S., Love W.J., Blanchard P.C., Crossley B., Van Eenennaam A.L., Lehenbauer T.W. Etiology and risk factors for bovine respiratory disease in pre-weaned calves on California dairies and calf ranches. Prev. Vet. Med. 2021; 197: 105506. https://doi.org/10.1016/j.prevetmed.2021.105506
- L’vov D.K., Al’khovskiy S.V., Kolobukhina L.V., Burtseva E.I. Etiology of epidemic outbreaks covid-19 in Wuhan, Hubei province, Chinese people republic associated with 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, subgenus Sarbecovirus): lessons of SARS-COV outbreak. Voprosy virusologii. 2020; 65(1): 6–15. https://doi.org/10.36233/0507-4088-2020-65-1-6-15 (in Russian)
- Koromyslov G.F., Avilov V.S., Gogolev M.M. Rotavirus and coronavirus infection of calves. Vestnik sel’skokhozyaystvennoy nauki. 1984; (7): 129–36. (in Russian)
- Decaro N., Elia G., Campolo M., Desario С., Mari V., Radogna A., et al. Detection of bovine coronavirus using a TaqMan-based real-time RT-PCR assay. J. Virol. Methods. 2008; 151(2): 167–71. https://doi.org/10.1016/j.jviromet.2008.05.01
- Zhao H., Liu J., Li Y., Yang C., Zhao S., Liu J., et al. Validation of reference genes for quantitative real-time PCR in Bovine PBMCs transformed and non-transformed by Theileria annulata. Korean J. Parasitol. 2016; 54(1): 39–46. https://doi.org/10.3347/kjp.2016.54.1.39
- Takiuchi E., Stipp D.T., Alfieri A.F., Alfieri A.A. Improved detection of bovine coronavirus N gene in faeces of calves infected naturally by a semi-nested PCR assay and an internal control. J. Virol. Methods. 2006; 131(2): 148–54. https://doi.org/10.1016/j.jviromet.2005.08.005
- Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016; 7(33): 1870–74. https://doi.org/10.1093/molbev/msw0544
- Lotfollahzadeh S., Madadgar O., Reza Mohebbi M., Reza Mokhber Dezfouli M., George W.D. Bovine coronavirus in neonatal calf diarrhoea in Iran. Vet. Med. Sci. 2020; 6(4): 686–94. https://doi.org/10.1002/vms3.277
- Kanno T., Hatama S., Ishihara R., Uchida I. Molecular analysis of the S glycoprotein gene of bovine coronaviruses isolated in Japan from 1999 to 2006. J. Gen. Virol. 2007; 88(Pt. 4): 1218–24. https://doi.org/10.1099/vir.0.82635-0
- Amicone M., Borges V., Alves M.J., Isidro J., Zé-Zé L., Duarte S., et al. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol. Med. Public Health. 2022; 10(1): 142–55. https://doi.org/10.1093/emph/eoac010
- Gunn L., Collins P.J. O’Connell M.J., O’Shea H. Phylogenetic investigation of enteric bovine coronavirus in Ireland reveals partitioning between European and global strains. Irish Vet. J. 2015; 68: 31. https://doi.org/10.1186/s13620-015-0060-33
- Bok M., Miño S., Rodriguez D., Badaracco A., Nuñes I., Souza S.P., et al. Molecular and antigenic characterization of bovine Coronavirus circulating in Argentinean cattle during 1994–2010. Vet. Microbiol. 2015; 181(3-4): 221–9. https://doi.org/10.1016/j.vetmic.2015.10.017
- De Mira Fernandes A., Brandão P.E., Dos Santos Lima M., de Souza Nunes Martins M., da Silva T.G., da Silva Cardoso Pinto V., et al. Genetic diversity of BCoV in Brazilian cattle herds. Vet. Med. Sci. 2018; 4(3): 183–9. https://doi.org/10.1002/vms3.102
- Zhu Q., Su M., Li Z., Wang X., Qi S., Zhao F., et al. Epidemiological survey and genetic diversity of bovine coronavirus in Northeast China. Virus Res. 2022; 308: 198632. https://doi.org/10.1016/j.virusres.2021.198632
- Castells M., Giannitti F., Caffarena R.D., Casaux M.L., Schild C., Castells D., et al. Bovine coronavirus in Uruguay: genetic diversity, risk factors and transboundary introductions from neighboring countries. Arch. Virol. 2019; 164(11): 2715–24. https://doi.org/10.1007/s00705-019-04384-w
Supplementary files
