Вирусы и летучие мыши: междисциплинарные проблемы

Обложка

Цитировать

Полный текст

Аннотация

Отношение вирусологов к рукокрылым (Chiroptera) изменилось в конце XX в. на фоне роста популярности концепции новых и возвращающихся (emerging) инфекций. После начала пандемии COVID-19 количество публикаций о вирусах рукокрылых резко возросло.

В обзоре рассмотрены история изучения, биологическое разнообразие этих животных и связанных с ними вирусов, медицинское и ветеринарное значение некоторых таксонов (Lyssavirus, Henipavirus, Marburgvirus, Ebolavirus, Sarbecоvirus, Merbecovirus), а также проблемы охраны рукокрылых. Поиск информации про- ведён в электронных базах данных преимущественно за период 2000–2021 гг. Включены публикации на русском языке, недостаточно представленные в англоязычных обзорах.

Цель представляемой работы состоит в обосновании важности междисциплинарного подхода к изучению вирусных инфекций рукокрылых в условиях возросшего интереса к данной проблеме. Обзор адресован прежде всего исследователям, ранее непосредственно не занимавшимся этой областью научных знаний.

С начала текущего столетия число известных видов вирусов, ассоциированных с рукокрылыми, возросло на порядок (>200). Первые ранговые места по числу находок занимают семейства Rhabdoviridae, Coronaviridae, Paramyxoviridae, а наиболее высокое разнообразие вирусов установлено для рукокрылых семейств Vespertilionidae, Pteropodidae, Molossidae. Междисциплинарное взаимодействие положительно влияет на результативность, биологическую безопасность и практическую значимость проводимых исследований.

Лучшие результаты достигнуты командами, в состав которых входили представители разных специальностей с хорошей подготовкой по смежным вопросам. Во многих работах подчёркивается необходимость соблюдения баланса интересов в сферах здравоохранения и охраны природы.

Анализ научных публикаций свидетельствует об изменении подходов к исследованиям в этой области: от сбора фактов в рамках отдельных специальностей к комплексной оценке новых знаний с экологических, эволюционных и социально-экономических позиций. Актуальность связанных с рукокрылыми вирусных инфекций определяет необходимость коррекции и межведомственной координации научной работы и эпидемиологического надзора за зоонозами в Российской Федерации.

Об авторах

А. Д. Ботвинкин

ФГБОУ ВО «Иркутский государственный медицинский университет» Минздрава России

Автор, ответственный за переписку.
Email: botvinkin_ismu@mail.ru
ORCID iD: 0000-0002-1324-7374

Ботвинкин Александр Дмитриевич, д-р мед. наук, заведующий кафедрой эпидемиологии.

664003, Иркутск, Россия

Россия

Список литературы

  1. Baer G.M., ed. The Natural History of Rabies. New York, San Francisco, London: Academic press; 1975.
  2. Павловский Е.Н. Основы учения о природной очаговости трансмиссивных болезней человека. Журнал общей биологии. 1946; (7): 3–33.
  3. Newman S.H., Field H.E., de Long С.E., Epstein J.N., eds. Food and Agriculture Organization of the United Nations. Investigating the Role of Bats in Emerging Zoonozes. Balancing Ecology, Conservation and Public Health Interest. Manual No 12. Rome: FAO Animal Production and Health; 2011.
  4. Леншин С.В., Ромашин А.В., Вышемирский О.И., Львов Д.К., Альховский С.В. Летучие мыши субтропической зоны Краснодарского края как возможный резервуар зоонозных вирусных инфекций. Вопросы вирусологии. 2021; 66(2): 112–22. https://doi.org/10.36233/0507-4088-41
  5. Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006; 19(3): 531–45. https://doi.org/10.1128/CMR.00017-06
  6. Lederberg J., Shope R.E., Oaks S.C., eds. Emerging Infections: Microbial Threats to Health in the United States. Washington: National Academies Press; 1992.
  7. Moratelli R., Calisher C.H. Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? Mem. Inst. Oswaldo Cruz. 2015; 110(1): 1–22. https://doi.org/10.1590/0074-02760150048
  8. Wang L.-F., Cowled C., eds. Bats and Viruses: A New Frontier of Emerging Infectious Diseases. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2015. https://doi.org/10.1002/9781118818824
  9. Макаров В.В., Лозовой Д.А. Новые особо опасные инфекции, ассоциированные с рукокрылыми. Владимир; 2016.
  10. Corrales-Aguilar E., Schwemmle M., eds. Bats and Viruses: Current Research and Future Trends. Caister: Academic Press; 2020.
  11. Поршаков А.М., Кононова Ю.В., Локтев В.Б., Boiro M.I. Рукокрылые как возможный резервуар опасных для человека вирусов на территории Гвинейской Республики. Часть 1. Проблемы особо опасных инфекций. 2018; (3): 32–9. https://doi.org/10.21055/0370-1069-2018-3-32-39
  12. Поршаков А.М., Кононова Ю.В., Локтев В.Б., Boiro M.I. Рукокрылые как возможный резервуар опасных для человека вирусов на территории Гвинейской Республики. Часть 2. Проблемы особо опасных инфекций. 2018; (4): 20–6. https://doi.org/10.21055/0370-1069-2018-4-20-26
  13. Макаров В.В., Барсуков О.Ю. Эмерджентные зоонозы, ассоциированные с рукокрылыми. Пест-менеджмент. 2019; (2): 18–2. https://doi.org/10.25732/PM.2019.110.2.003
  14. Поршаков А.М., Кононова Ю.В., Лыонг Т.М. Филовирусы Юго-Восточной Азии, Китая и Европы (обзор литературы). Журнал инфектологии. 2019; 11(2): 5–13. https://doi.org/10.22625/2072-6732-2019-11-2-5-13
  15. Сизикова Т.Е., Боярская Н.В., Ковальчук А.В., Лебедев В.Н., Борисевич С.В. Новые представители семейства Filoviridae: распространение, природные резервуары, потенциальная эпидемическая опасность. Вестник войск РХБ защиты. 2019; 3(4): 329–36. https://doi.org/10.35825/2587-5728-2019-3-4-329-336
  16. Львов Д.К., Альховский С.В. Истоки пандемии COVID-19: эко- логия и генетика коронавирусов (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (подрод Sarbecovirus), MERS-CoV (подрод Merbecovirus). Вопросы вирусологии. 2020; 65(2): 62–70. https://doi.org/10.36233/0507-4088-2020-65-2-62-70
  17. Шестопалов А.М., Кононова Ю.В., Гаджиев А.А., Гуляева М.А., Маранди М.В., Алексеев А.Ю., и др. Биоразнообразие и эпидемический потенциал коронавирусов (Nidovirales: Coronaviridae) рукокрылых. Юг России: экология, развитие. 2020; 15(2): 17–34. https://doi.org/10.18470/1992-1098-2020-2-17-34
  18. Должикова И.В., Щербинин Д.Н., Логунов Д.Ю., Гинцбург А.Л. Вирус Эбола (Filoviridae: Ebolavirus: Zaire ebolavirus): фатальные адаптационные мутации. Вопросы вирусологии. 2021; 66(1): 7–16. https://doi.org/10.36233/0507-4088-23
  19. Puechmaille S.J., Ar Gouilh M., Dechmann D., Fenton B., Geiselman C., Medellin R., et al. Misconceptions and misinformation about bats and viruses. Int. J. Infect. Dis. 2021; 105: 606–7. https://doi.org/10.1016/j.ijid.2021.02.097
  20. Егоров А.Ю., Романова Ю.Р. Влияние глобального распределения летучих мышей на смертность у пациентов с COVID-19. Microbiol. Indep. Res. J. 2020; 7(1): 34–41. https://doi.org/10.18527/2500-2236-2020-7-1-34-41
  21. Chen L., Liu B., Yang J., Jin Q. DBatVir: the database of bat-associated viruses. Database. 2014; 2014: bau021. https://doi.org/10.1093/database/bau021
  22. Щелканов М.Ю., Дунаева М.Н., Москвина Т.В., Воронова А.Н., Кононова Ю.В., Воробьёва В.В., и др. Каталог вирусов рукокрылых (2020). Юг России: экология, развитие. 2020; 15(3): 6–30. https://doi.org/10.18470/1992-1098-2020-3-6-30
  23. Hermida Lorenzo R.J., Cadar D., Koundouno F.R., Juste J., Bialonski A., Baum H., et al. Metagenomic snapshots of viral components in Guinean bats. Microorganisms. 2021; 9(3): 599. https://doi.org/10.3390/microorganisms9030599
  24. International Committee on Taxonomy of Viruses. Available at: https://talk.ictvonline.org (accessed 24 July 2021).
  25. Wilson D.E., Mittermeier R.A. Handbook of the Mammalians of the World. Volume 9: Bats. Barcelona: Lynx Ediciones. 2019. Available at: https://www.lynxeds.com/product/handbook-of-the-mammalsof-the-world-volume-9/ (accessed 24 July 2021).
  26. Тиунов М.П., Крускоп С.В., Орлова М.В. Рукокрылые Дальнего Востока России и их эктопаразиты. М.: Перо; 2021.
  27. Российская рабочая группа по рукокрылым. Available at: https://zmmu.msu.ru/bats/rbgrhp/rbrg.htm (accessed 20 July 2021).
  28. IUCN: International Union for Conservation of Nature. Available at: https://www.iucn.org (accessed 24 July 2021).
  29. Luis A.D., Hayman D.T.S., O’Shea T.J., Cryan P.M., Gilbert A.T., Pulliam J.R.C., et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 2013; 280: 20122753. https://doi.org/10.1098/rspb.2012.2753
  30. Gorbunova V., Seluanov A., Kennedy B.K. The world goes bats: living longer and tolerating viruses. Cell Metabolism. 2020; 32(1): 31–43. https://doi.org/10.1016/j.cmet.2020.06.013
  31. Rupprecht C., Kuzmin I., Meslin F. Lyssaviruses and rabies: current conundrums, concerns, contradictions and controversies. F1000Research. 2017; 6: 184. https://doi.org/10.12688/f1000research.10416.1
  32. Epstein J.H., Anthony S.J., Islam A., Kilpatrick A.M., Ali Khan S., Balkey M.D., et al. Nipah virus dynamics in bats and implications for spillover to humans. Proc. Natl. Acad. Sci. USA. 2020; 117(46): 29190–201. https://doi.org/10.1073/pnas.2000429117
  33. WHO. Coronavirus (COVID-19) Dashboard. Available at: https://covid19.who.int (accessed 17 July 2021).
  34. Banyard A.C., Evans J.S., Luo T.R., Fooks A.R. Lyssaviruses and bats: emergence and zoonotic threat. Viruses. 2014; 6(8): 2974–90. https://doi.org/10.3390/v6082974
  35. Ботвинкин А.Д. Смертельные случаи заболевания людей бешенством в Евразии после контактов с рукокрылыми (обзор литературы). Plecotus et al. 2011; (14): 75–86. Available at: https://zmmu.msu.ru/bats/biblio/rabies.pdf (accessed 17 July 2021).
  36. Kuzmin I.V., Botvinkin A.D., Poleschuk E.M., Orciari L.A., Rupprecht C.E. Bat rabies surveillance in the former Soviet Union. Dev. Biol. (Basel). 2006; 125: 273–82.
  37. Терновой В.А., Зайковская А.В., Томиленко А.А., Аксёнов В.И., Чаусов Е.В., Шестопалов А.М. Лиссавирусы у летучих мышей, обитающих на юге Западной Сибири. Вопросы вирусологии. 2005; 50(1): 31–4.
  38. Lu Z.L., Wang W., Yin W.L., Tang H.B., Pan Y., Liang X., et al. Lyssavirus surveillance in bats of southern China’s Guangxi Province. Virus Genes. 2013; (2): 293–301. https://doi.org/10.1007/s11262-012-0854-2
  39. Drexler J.F., Corman V.M., Muller M.A., Maganga G.D., Vallo P., Binger T., et al. Bats host major mammalian paramyxoviruses. Nat. Commun. 2012; 3: 796. https://doi.org/10.1038/ncomms1796
  40. Sharma V., Kaushik S., Kumar R., Yadav J.P., Kaushik S. Emerging trends of Nipah virus: A review. Rev. Med. Virol. 2019; (1): e2010. https://doi.org/10.1002/rmv.2010
  41. Williamson K.M., Wheeler S., Kerr J., Bennett J., Freeman P., Kohlhagen J., et al., BatOneHealth field team. Hendra in the Hunter Valley. One Health. 2020; 10: 100162. https://doi.org/10.1016/j.onehlt.2020.100162
  42. Kuzmin I.V., Niezgoda M., Franka R., Agwanda B., Markotter W., Breiman R.F., et al. Marburg virus in fruit bat, Kenya. Emerg. Infect. Dis. 2010; 16(2): 352–4. https://doi.org/10.3201/eid1602.091269
  43. Koch L.K., Cunze S., Kochmann J., Klimpel S. Bats as putative Zaire ebolavirus reservoir hosts and their habitat suitability in Africa. Sci. Rep. 2020; 10(1): 14268. https://doi.org/10.1038/s41598-020-71226-0
  44. Negredo A., Palacios G., Vázquez-Morón S., González F., Dopazo H., Molero F., et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog. 2011; 7(10): e1002304. https://doi.org/10.1371/journal.ppat.1002304
  45. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310(5748): 676–9. https://doi.org/10.1126/science.1118391
  46. Luk H.K.H., Li X., Fung J., Lau S.K.P., Woo P.C.Y. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect. Genet. Evol. 2019; 71: 21–30. https://doi.org/10.1016/j.meegid.2019.03.001
  47. Leitner T., Kumar S. Where did SARS-CoV-2 come from? Mol. Biol. Evol. 2020; 37(9): 2463–4. https://doi.org/10.1093/molbev/msaa162
  48. Ji W., Wang W., Zhao X., Zai J., Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J. Med. Virol. 2020; 92(4): 433–40. https://doi.org/10.1002/jmv.25682
  49. Olival K.J., Cryan P.M., Amman B.R., Baric R.S., Blehert D.S., Brook C.E., et al. Possibility for reverse zoonotic transmission of SARSCoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathog. 2020; 16(9): e1008758. https://doi.org/10.1371/journal.ppat.1008758
  50. Wolfe N.D., Dunavan C.P., Diamond J. Origins of major human infectious diseases. Nature. 2007; 447(7142): 279–83. https://doi.org/10.1038/nature05775
  51. Patyk K., Turmelle A., Blanton J.D., Rupprecht C.E. Trends in national surveillance data for bat rabies in the United States: 2001–2009. Vector. Borne. Zoonotic. Dis. 2012; 12(8): 666–73. https://doi.org/10.1089/vbz.2011.0839
  52. Schatz J., Fooks A.R., McElhinney L., Horton D., Echevarria J., Vázquez-Moron S., et al. Bat rabies surveillance in Europe. Zoonoses Public Health. 2013; 60(1): 22–34. https://doi.org/10.1111/zph.12002
  53. Phelps K.L., Hamel L., Alhmoud N., Ali S., Bilgin R., Sidamonidze K., et al. Bat research networks and viral surveillance: gaps and opportunities in Western Asia. Viruses. 2019; 11(3): 240. https://doi.org/10.3390/v11030240
  54. Транквилевский Д.В., Жуков В.И., Царенко В.А. Вероятность заражения населения возбудителями, ассоциированными с рукокрылыми, в Российской Федерации. Здоровье населения и среда обитания. 2018; (3): 32–7. https://doi.org/10.35627/2219-5238/2018-300-3-32-37
  55. Voigt C.C., Kingston T., eds. Bats in the Anthropocene: conservation of bats in a changing world. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-25220-9_1
  56. Bat Concervation International. Available at: https://www.batcon.org (accessed 24 July 2021).
  57. UNEP/EUROBATS. Agreement on the сonservation of populations of European bats. Available at: https://www.eurobats.org/ (accessed 24 July 2021).
  58. Melber M., Gloza-Rausch F., Voigt C.C. Statement on handling of bats in times of Covid-19 regarding the IUCN Bat Specialists Groups recommendations of field activities for the protection of bats. Available at: https://bvfledermaus.de/wp-content/uploads/2020/04/BVF_Statement_on_Handling_of_Bats_in_times_of_Covid_19.pdf (accessed 24 July 2021).
  59. Германчук В.Г., Семакова А.П., Шавина Н.Ю. Этические принципы при обращении с лабораторными животными в эксперименте с патогенными биологическими агентами I–II групп. Проблемы особо опасных инфекций. 2018; (4): 33–8. https://doi.org/10.21055/0370-1069-2018-4-33-38
  60. Cunningham A.A., Daszak P., Wood J.L.N. One Health, emerging infectious diseases and wildlife: two decades of progress? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2017; 372(1725): 20160167. https://doi.org/10.1098/rstb.2016.0167

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ботвинкин А.Д., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».