Epstein-Barr virus (Herpesviridae: Gammaherpesvirinae: Lymphocryptovirus: Human gammaherpesvirus 4): replication strategies
- Authors: Yakushina S.A.1, Kisteneva L.B.1
-
Affiliations:
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Ministry of Health of Russian Federation
- Issue: Vol 65, No 4 (2020)
- Pages: 191-202
- Section: REVIEWS
- URL: https://ogarev-online.ru/0507-4088/article/view/118120
- DOI: https://doi.org/10.36233/0507-4088-2020-65-4-191-202
- ID: 118120
Cite item
Full Text
Abstract
The Epstein-Barr virus (EBV), one of the most common in the human population, is capable of lifelong persistence in resting memory B-cells, in T-cells in case of type 2 EBV, and in some undifferentiated epithelial cells. In most people, EBV persistence is not accompanied by significant symptoms, but frequent virus activations are associated with the increased risks of severe diseases, such as chronic active Epstein-Barr virus infection, hemophagocytic lymphohistiocytosis, multiple sclerosis, systemic lupus erythematosus, gastric and nasopharyngeal carcinomas, and a variety of T- and B-cell lymphomas. Therefore, the molecular viral and host cell processes during asymptomatic or low-symptom EBV persistence are of great interest. This review describes the behavior of the viral DNA in an infected cell and the forms of its existence (linear, circular episome, chromosomally integrated forms), as well as methods of EBV genome copying. Two closely related cycles of viral reproduction are considered. Lytic activation is unfavorable for the survival of a particular viral genome in the cell, and may be a result of differentiation of a latently infected cell, or the arrival of stress signals due to adverse extracellular conditions. The EBV has a large number of adaptive mechanisms for limiting lytic reactivation and reducing hostility of host immune cells. Understanding the molecular aspects of EBV persistence will help in the future develop more effective targeted drugs for the treatment of both viral infection and associated diseases.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
S. A. Yakushina
National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Ministry of Health of Russian Federation
Email: sofia.iakushina@gmail.com
ORCID iD: 0000-0003-0507-0174
Sofia A. Yakushina - junior researcher of the Laboratory of Chronic Viral Infections.
18 Gamaleya St, Moscow, 123098
Russian FederationL. B. Kisteneva
National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Ministry of Health of Russian Federation
Author for correspondence.
Email: lidia.kisteneva@gmail.com
ORCID iD: 0000-0001-7336-409X
Lidiya B. Kisteneva - Doct. Sci. (Med.), Head of the Laboratory of Chronic Viral Infections.
18 Gamaleya St, Moscow, 123098
Russian FederationReferences
- Kieff E. Epstein-Barr virus and its replication. In: Fields B.N., Knipe D.M., Howley P.M., eds. Field’s virology. Volume 2. Philadelphia: Lippincott-Raven Publishers; 1996: 2343-96.
- Бошьян Р.Е. Инфекция, вызванная вирусом Эпштейна-Барр: эпидемиологические проявления и лабораторная диагностика: Автореф. дисс... канд. мед. наук. М.; 2009.
- Hutt-Fletcher LM. Epstein-Barr virus entry. J. Virol. 2007; 81(15): 7825-32. DOI: http://doi.org/10.1128/JVI.00445-07
- Fearon D.T., Carter R.H. The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu. Rev. Immunol. 1995; 13: 127-49. DOI: http://doi.org/10.1146/annurev.iy.13.040195.001015
- Fingeroth J.D., Diamond M.E., Sage D.R., Hayman J., Yates J.L. CD21-Dependent infection of an epithelial cell line, 293, by Epstein-Barr virus. J. Virol. 1999; 73(3): 2115-25. DOI: http://doi.org/10.1128/JVI.73.3.2115-2125.1999
- Maruo S., Yang L., Takada K. Roles of Epstein-Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells. J. Gen. Virol. 2001; 82(Pt. 10): 2373-83. DOI: http://doi.org/10.1099/0022-1317-82-10-2373
- Xiao J., Palefsky J.M., Herrera R., Berline J., Tugizov S.M. EBV BMRF-2 facilitates cell-to-cell spread of virus within polarized oral epithelial cells. Virology. 2009; 388(2): 335-43. DOI: http://doi.org/10.1016/j.virol.2009.03.030
- Rickinson A.B., Kieff E. Epstein-Barr virus. In: Fields B.N., Knipe D.M., Howley P.M., eds. Field’s virology. Volume 2. Philadelphia: Lippincott-Raven Publishers; 2007: 2655-700.
- Souza T.A., Stollar B.D., Sullivan J.L., Luzuriaga K., Thorley-Law-son D.A. Peripheral B cells latently infected with Epstein-Barr virus display molecular hallmarks of classical antigen-selected memory B cells. Proc. Natl. Acad. Sci. USA. 2005; 102(50): 18093-8. DOI: http://doi.org/10.1073/pnas.0509311102
- Thorley-Lawson D.A. EBV persistence - introducing the virus. Curr. Top. Microbiol. Immunol. 2015; 390(Pt. 1): 151-209. DOI: http://doi.org/10.1007/978-3-319-22822-8_8
- Hochberg D., Souza T., Catalina M., Sullivan J.L., Luzuriaga K., Thorley-Lawson D.A. Acute infection with Epstein-Barr Virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol. 2004; 78(10): 5194-204. DOI: http://doi.org/rn.n28/JVI.78.rn.5194-5204.2004
- Coleman C.B., Wohlford E.M., Smith N.A., King C.A., Ritchie J.A., Baresel P.C., et al. Epstein-Barr virus type 2 latently infects T-cells, inducing an atypical activation characterized by expression of lymphotactic cytokines. J. Virol. 2015; 89(4): 2301-12. DOI: http://doi.org/10.1128/JVI.03001-14
- Якушина С.А., Кистенева Л.Б. Влияние персистенции вируса Эпштейна-Барр на развитие иммуноопосредованных соматических заболеваний. Российский вестник перинатологии и педиатрии. 2018; 63(1): 22-7. DOI: http://doi.org/10.21508/1027-4065-2018-63-1-22-27
- Loebel M., Eckey M., Sotzny F., Hahn E., Bauer S., Grabowski P., et al. Serological profiling of the EBV immune response in Chronic Fatigue Syndrome using a peptide microarray. PLoS One. 2017; 12(6): e0179124. DOI: http://doi.org/10.1371/journal.pone.0179124
- Handel A.E., Williamson A.J., Disanto G., Handunnetthi L., Giovannoni G., Ramagopalan S.V. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One. 2010; 5(9): e12496. DOI: http://doi.org/10.1371/journal.pone.0012496
- Draborg A.H., Duus K., Houen G. Epstein-Barr virus in systemic autoimmune diseases. Clin. Dev. Immunol. 2013; 2013: 535738. DOI: http://doi.org/10.1155/2013/535738
- McGeoch D.J., Gatherer D. Lineage structures in the genome sequences of three Epstein-Barr virus strains. Virology. 2007; 359(1): 1-5. DOI: http://doi.org/10.1016/j.virol.2006.10.009
- Kanda T., Yajima M., Ikuta K. Epstein-Barr virus strain variation and cancer. CancerSci. 2019;110(4): 1132-9. DOI: http://doi.org/10.1111/cas.13954
- Zeng M.S., Li D.J., Liu Q.L., Song L.B., Li M.Z., Zhang R.H., et al. Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J. Virol. 2005; 79(24): 15323-30. DOI: http://doi.org/10.1128/JVI.79.24.15323-15330.2005
- Tsai M.H., Lin X., Shumilov A., Bernhardt K., Feederle R., Poirey R., et al. The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers. On-cotarget. 2016; 8(6): 10238-54. DOI: http://doi.org/10.18632/oncotarget.14380
- Lin Z., Wang X., Strong M.J., Concha M., Baddoo M., Xu G., et al. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J. Virol. 2013; 87(2): 1172-82. DOI: http://doi.org/10.1128/JVI.02517-12
- Palser A.L., Grayson N.E., White R.E., Corton C., Correia S., Ba Abdullah M.M., et al. Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J. Virol. 2015; 89(10): 5222-37. DOI: http://doi.org/10.1128/JVI.03614-14
- Correia S., Bridges R., Wegner F., Venturini C., Palser A., Middeldorp J.M., et al. Sequence variation of Epstein-Barr Virus: viral types, geography, codon usage, and diseases. J. Virol. 2018; 92(22): e01132-18. DOI: http://doi.org/10.1128/JVI.01132-18
- Neves M., Marinho-Dias J., Ribeiro J., Sousa H. Epstein-Barr virus strains and variations: Geographic or disease-specific variants? J. Med. Virol. 2017; 89(3): 373-87. DOI: http://doi.org/10.1002/jmv.24633
- Adamson A.L., Darr D., Holley-Guthrie E., Johnson R.A., Mauser A., Swenson J., et al. Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J. Virol. 2000; 74(3): 1224-33. DOI: http://doi.org/10.1128/jvi.74.3.1224-1233.2000
- Abbott R.J., Quinn L.L., Leese A.M., Scholes H.M., Pachnio A., Rickinson A.B. CD8+ T cell responses to lytic EBV infection: late antigen specificities as subdominant components of the total response. J. Immunol. 2013; 191(11): 5398-409. DOI: http://doi. org/10.4049/jimmunol.1301629
- Kanegane H., Wakiguchi H., Kanegane C., Kurashige T., Tosato G. Viral interleukin-10 in chronic active Epstein-Barr virus infection. J. Infect. Dis. 1997; 176(1): 254-7. DOI: http://doi.org/10.1086/517260
- Kang M.S., Kieff E. Epstein-Barr virus latent genes. Exp. Mol. Med. 2015; 47(1): e131. DOI: http://doi.org/10.1038/emm.2014.84
- Niedobitek G., Agathanggelou A., Herbst H., Whitehead L., Wright D.H., Young L.S. Epstein-Barr virus (EBV) infection in infectious mononucleosis: virus latency, replication and phenotype of EBV-infected cells. J. Pathol. 1997; 182: 151-9. DOI: http://doi.org/10.1002/(SICI)1096-9896(199706)182:2<151::AID-PATH824>3.0.CO;2-3
- Niedobitek G., Kremmer E., Herbst H., Whitehead L., Dawson C.W., Niedobitek E., et al. Immunohistochemical detection of the Epstein-Barr virus-encoded latent membrane protein 2A in Hodgkin’s disease and infectious mononucleosis. Blood. 1997; 90(4): 1664-72.
- Gulley M.L., Raab-Traub N. Detection of Epstein-Barr virus in human tissues by molecular genetic techniques. Arch. Pathol. Lab. Med. 1993; 117(11): 1115-20.
- Arvin A., Campadelli-Fiume G., Mocarski E., Moore P.S., Roizman B., Whitley R., et al., eds. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge; 2007.
- Hurley E.A., Thorley-Lawson D.A. B cell activation and the establishment ofEpstein-Barr virus latency. J. Exp. Med. 1988; 168(6): 2059-75. DOI: http://doi.org/10.1084/jem.168.6.2059
- Yates J.L Epstein-Barr virus DNA replication. In: DePamphilis M. L., ed. DNA Replication in Eukaryotic Cells. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1996: 751-74.
- Hammerschmidt W., Sugden B. Replication of Epstein-Barr viral DNA. Cold Spring Harb. Perspect. Biol. 2013; 5(1): a013029. DOI: http://doi.org/10.1101/cshperspect.a013029
- Hammerschmidt W., Sugden B. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell. 1988; 55(3): 427-33. DOI: http://doi.org/10.1016/0092-8674(88)90028-1
- Neuhierl B., Delecluse H.J. The Epstein-Barr virus BMRF1 gene is essential for lytic virus replication. J. Virol. 2006; 80(10): 5078-81. DOI: http://doi.org/10.1128/JVI.80.10.5078-5081.2006
- Narita Y., Sugimoto A., Kawashima D., Watanabe T., Kanda T., Ki-mura H., et al. A herpesvirus specific motif of Epstein-Barr virus DNA polymerase is required for the efficient lytic genome synthesis. Sci. Rep. 2015; 5: 11767. DOI: http://doi.org/10.1038/srep11767
- Schildgen O., Graper S., Blumel J., Matz B. Genome replication and progeny virion production of herpes simplex virus type 1 mutants with temperature-sensitive lesions in the origin-binding protein. J. Virol. 2005; 79(11): 7273-8. DOI: http://doi.org/10.1128/JVI.79.11.7273-7278.2005
- Daikoku T., Kudoh A., Fujita M., Sugaya Y., Isomura H., Shirata N. , et al. Architecture of replication compartments formed during Epstein-Barr virus lytic replication. J. Virol. 2005; 79(6): 3409-18. DOI: http://doi.org/10.1128/JVI.79.63409-3418.2005
- Tsurumi T., Fujita M., Kudoh A. Latent and lytic Epstein-Barr virus replication strategies. Rev. Med. Virol. 2005; 15(1): 3-15. dOi: http://doi.org/10.1002/rmv.441
- Maul G.G. Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays. 1998; 20(8): 660-7. DOI: http://doi.org/10.1002/(SICI)1521-1878(199808)20:8<660::AID-BIES9>3.0.CO;2-M
- Rivera-Molina Y.A., Martinez F.P., Tang Q. Nuclear domain 10 of the viral aspect. World J. Virol. 2013; 2(3): 110-22. DOI: http://doi.org/10.5501/wjv.v2.i3.110
- Amon W., White R.E., Farrell P.J. Epstein-Barr virus origin of lytic replication mediates association of replicating episomes with promyelocytic leukaemia protein nuclear bodies and replication compartments. J. Gen. Virol. 2006; 87(Pt. 5): 1133-7. DOI: http://doi.org/10.1099/vir.0.81589-0
- Sivachandran N., Wang X., Frappier L. Functions of the Epstein-Barr Virus EBNA1 Protein in Viral Reactivation and Lytic Infection. J. Virol. 2012; 86(11): 6146-58. DOI: http://doi.org/10.1128/JVI.00013-12
- Ling P.D., Peng R.S., Nakajima A., Yu J.H., Tan J., Moses S.M., et al. Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J. 2005; 24: 3565-75. DOI: http://doi.org/10.1038/sj.emboj.7600820
- Tsai K., Thikmyanova N., Wojcechowskyj J.A., Delecluse H.J., Lieberman P.M. EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription. PLoSPathog. 2011; 7(11): e1002376. DOI: http://doi.org/10.1371/journal.ppat.1002376
- Shaw J.E., Levinger L.F., Carter C.W. Nucleosomal structure of Epstein-Barr virus DNA in transformed cell lines. J. Virol. 1979; 29(2): 657-65. DOI: http://doi.org/10.1128/JVI.29.2.657-665.1979
- Morissette G., Flamand L. Herpesviruses and chromosomal integration. J. Virol. 2010; 84(23): 12100-9. DOI: http://doi.org/10.n28/JVI.01169-m
- Reisinger J., Rumpler S., Lion T., Ambros P.F. Visualization of ep-isomal and integrated Epstein-Barr virus DNA by fiber fluorescence in situ hybridization. Int. J. Cancer. 2006; 118(7): 1603-8. DOI: http://doi.org/10.1002/ijc.21498
- Nanbo A., Sugden A., Sugden B. The coupling of synthesis and partitioning of EBV’s plasmid replicon is revealed in live cells. EMBO J. 2007; 26(19): 4252-62. DOI: http://doi.org/10.1038/sj.emboj.7601853
- Humme S., Reisbach G., Feederle R., Delecluse H.J., Bousset K., Hammerschmidt W., et al. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc. Natl. Acad. Sci. USA. 2003; 100(19): 10989-94. DOI: http://doi.org/10.1073/pnas.1832776100
- Bell P., Lieberman P.M., Maul G.G. Lytic but not latent replication of Epstein-Barr virus is associated with PML and induces sequential release of nuclear domain 10 proteins. J. Virol. 2000; 74(24): 11800-10. DOI: http://doi.org/10.1128/jvi.74.24.11800-11810.2000
- Yates J.L., Guan N. Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J. Virol. 1991; 65(1): 483-8. DOI: http://doi.org/10.1128/JVI.65.1.483-488.1991
- Gahn T.A., Schildkraut C.L. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell. 1989; 58(3): 527-35. DOI: http://doi.org/10.1016/0092-8674(89)90433-9
- Deng Z., Lezina L., Chen C.J., Shtivelband S., So W., Lieberman P.M. Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol. Cell. 2002; 9(3): 493-503. DOI: http://doi.org/10.1016/s1097-2765(02)00476-8
- Rawlins D.R., Milman G., Hayward S.D., Hayward G.S. Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell. 1985; 42(3): 859-68. DOI: http://doi.org/10.1016/0092-8674(85)90282-x
- Yates J.L., Camiolo S.M., Bashaw J.M. The minimal replicator of Epstein-Barr virus oriP. J. Virol. 2000; 74(10): 4512-22. DOI: http://doi.org/10.1128/jvi.74.10.4512-4522.2000
- Norio P., Schildkraut C.L. Plasticity of DNA replication initiation in Epstein-Barr virus episomes. PLoSBiology. 2004;2(6): e152. DOI: http://doi.org/10.1371/journal.pbio.0020152
- Norio P., Schildkraut C.L., Yates J.L. Initiation of DNA replication within oriP is dispensable for stable replication of the latent Ep-stein-barr virus chromosome after infection of established cell lines. J. Virol. 2000; 74(18): 8563-74. DOI: http://doi.org/10.1128/jvi.74.18.8563-8574.2000
- Wang C.Y., Sugden B. Identifying a property of origins of DNA synthesis required to support plasmids stably in human cells. Proc. Natl. Acad. Sci. USA. 2008; 105(28): 9639-44. DOI: http://doi.org/10.1073/pnas.0801378105
- Zhou J., Snyder A.R., Lieberman P.M. Epstein-Barr virus episome stability is coupled to a delay in replication timing. J. Virol. 2009; 83(5): 2154-62. DOI: http://doi.org/10.1128/JVI.02115-08
- Chang Y., Cheng S.D., Tsai C.H. Chromosomal integration of Ep-stein-Barr virus genomes in nasopharyngeal carcinoma cells. Head Neck. 2002; 24(2): 143-50. DOI: http://doi.org/10.1002/hed.10039
- Epstein M.A., Achong B.G., Barr Y.M., Zajac B., Henle G., Henle W. Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J. Natl. Cancer Inst. 1966; 37(4): 547-59.
- Cheung S.T., Huang D.P., Hui A.B., Lo K.W., Ko C.W., Tsang Y.S., et al. Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. Int. J. Cancer. 1999; 83(1): 121-6. DOI: http://doi.org/10.1002/(sici)1097-0215(19990924)83:1<121::aid-ijc21>3.0.co;2-f
- Delecluse H.J., Bartnizke S., Hammerschmidt W., Bullerdiek J., Bornkamm G.W. Episomal and integrated copies of Epstein-Barr virus coexist in Burkitt lymphoma cell lines. J. Virol. 1993; 67(3): 1292-9. DOI: http://doi.org/10.1128/JVI.67.3.1292-1299.1993
- Traylen C.M., Patel H.R., Fondaw W., Mahatme S., Williams J.F., Walker L.R., et al. Virus reactivation: a panoramic view in human infections. Future Virol. 2011; 6(4): 451-63. DOI: http://doi.org/10.2217/fvl.11.21
- Gao J., Luo X., Tang K., Li X., Li G. Epstein-Barr virus integrates frequently into chromosome 4q, 2q, 1q and 7q of Burkitt’s lymphoma cell line (Raji). J. Virol. Methods. 2006; 136(1-2): 193-9. DOI: http://doi.org/10.1016/jjviromet.2006.05.013
- Xiao K., Yu Z., Li X., Li X., Tang K., Tu C., et al. Genome-wide analysis of Epstein-Barr virus (EBV) integration and strain in C666-1 and Raji cells. J. Cancer. 2016; 7(2): 214-24. DOI: http://doi.org/10.7150/jca.13150
- Takakuwa T., Luo W.J., Ham M.F., Sakane-Ishikawa F., Wada N., Aozasa K. Integration of Epstein-Barr virus into chromosome 6q15 of Burkitt lymphoma cell line (Raji) induces loss of BACH2 expression. Am. J. Pathol. 2004; 164(3): 967-74. DOI: http://doi.org/10.1016/S0002-9440(10)63184-7
- Xu M., Zhang W.L., Zhu Q., Zhang S., Yao Y.Y., Xiang T., et al. Genome-wide profiling of Epstein-Barr virus integration by targeted sequencing in Epstein-Barr virus associated malignancies. Thera-nostics. 2019; 9(4): 1115-24. DOI: http://doi.org/10.7150/thno.29622
- Rose C., Green M., Webber S., Kingsley L., Day R., Watkins S., et al. Detection of Epstein-Barr virus genomes in peripheral blood B cells from solid-organ transplant recipients by fluorescence in situ hybridization. J. Clin. Microbiol. 2002; 40(7): 2533-44. DOI: http://doi.org/10.1128/JCM.40.7.2533-2544.2002
- Hall C.B., Caserta M.T., Schnabel K., Shelley L.M., Marino A.S., Carnahan J.A., et al. Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatrics. 2008; 122(3): 513-20. DOI: http://doi.org/10.1542/peds.2007-2838
Supplementary files
