Экспрессия эндотелиальных факторов в клетках эндотелия человека при инфекции, вызванной вирусом гриппа А(H1N1)pdm09 (Orthomyxoviridae; Alphainfluenzavirus)

Обложка

Цитировать

Полный текст

Аннотация

Введение. Вирус гриппа (ВГ) А (Orthomyxoviridae; Alphainfluenzavirus) способен вызывать дисфункцию эндотелия (ДЭ), апоптоз эндотелиоцитов, а также влиять на экспрессию эндотелиальных факторов, поддерживающих сосудистый гемостаз. В то же время воздействие этого патогена на характер экспрессии ключевых факторов эндотелия до настоящего времени неизвестно.

Цель исследования – выявить изменения экспрессии эндотелиальной синтазы оксида азота (NO) (eNOS) и ингибитора активатора плазминогена 1 (PAI-1, или serpin E1) в инфицированных ВГ А эндотелиоцитах. Задачи работы: изучение экспрессии указанных факторов в клетках эндотелия, инфицированных вирусом А(H1N1)pdm09; установление наличия гомологичных фрагментов в белках исследуемого патогена и эндотелиальных факторах.

Материал и методы. В экспериментах использовали клеточную линию эндотелия человека EA.hy926, которую инфицировали ВГ А/Санкт-Петербург/48/16 (H1N1)pdm09. Детекцию уровня экспрессии эндотелиальных факторов в динамике (6, 12, 18, 24, 48 и 72 ч) выполняли иммуноцитохимическим методом (ИЦХ) с помощью антител (АТ) к eNOS и PAI-1. Для количественной оценки полученного сигнала использовали программу Nis-Elements F3.2 («Nikon», Япония). Поиск гомологичных последовательностей в структуре вирусных белков и молекул eNOS и PAI-1 осуществляли путём компьютерного сравнения в них фрагментов длиной 12 а.о.

Результаты и обсуждение. Экспрессия eNOS в инфицированных клетках уменьшалась от 7,9% через 6 ч до 3,3% спустя 72 ч (контроль принят за 100%). Уровень экспрессии PAI-1 на протяжении исследования значительно варьировал: через 6 ч его показатель снижался до 49,6%, через 18 ч – возрастал до 116,3% с последующим резким падением до 18,9% спустя 24 ч. Через 48 ч и 72 ч выраженность экспрессии составляла 23,5 и 35% соответственно. В ряде белков исследуемого вируса обнаружены последовательности, гомологичные фрагментам eNOS и PAI-1.

Заключение. В ходе эксперимента с инфицированием клеток эндотелия ВГ А установлено, что вирус вызывает выраженное снижение экспрессии eNOS и модулирует экспрессию PAI-1. Описанное явление может быть использовано при дальнейшей разработке направлений патогенетической терапии сосудистых осложнений инфекции, вызываемой данным возбудителем.

Об авторах

В. А. Марченко

ФГБУ «Научно-исследовательский институт гриппа им. А.А. Смородинцева» Минздрава России

Автор, ответственный за переписку.
Email: vmarcenco@mail.ru
ORCID iD: 0000-0001-6870-3157

Марченко Владимир Александрович, аспирант, лаборант-исследователь лаборатории системной вирусологии.

197376, Санкт-Петербург

Россия

С. В. Барашкова

СПБ ГБУЗ «Детский городской многопрофильный клинический центр высоких медицинских технологий им. К.А. Раухфуса»

ORCID iD: 0000-0002-5618-4510

191036, Санкт-Петербург

Россия

И. А. Зелинская

ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России

ORCID iD: 0000-0002-1971-3444

197341, Санкт-Петербург

Россия

Я. Г. Торопова

ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России

ORCID iD: 0000-0003-1629-7868

197341, Санкт-Петербург

Россия

Э. С. Рэмзи

ФГБУ «Научно-исследовательский институт гриппа им. А.А. Смородинцева» Минздрава России

ORCID iD: 0000-0001-7086-5825

197376, Санкт-Петербург

Россия

И. Н. Жилинская

ФГБУ «Научно-исследовательский институт гриппа им. А.А. Смородинцева» Минздрава России

ORCID iD: 0000-0002-0084-1323

197376, Санкт-Петербург

Россия

Список литературы

  1. Fukunaga S., Ishida C., Nakaoka A., Ito T. A case of acute kidney injury and disseminated intravascular coagulation associated with influenza B viral infection. CEN Case Rep. 2014; 4(1): 95–100. https://doi.org/10.1007/s13730-014-0147-9
  2. Watanabe T., Yoshikawa H., Abe Y., Yamazaki S., Uehara Y., Abe T. Renal involvement in children with influenza A virus infection. Pediatr. Nephrol. 2003; 18(6): 541–4. https://doi.org/10.1007/s00467- 003-1143-z 3. Smeeth L., Cook C., Thomas S., Hall A.J., Hubbard R., Vallance P. Risk of deep vein thrombosis and pulmonary embolism after acute infection in a community setting. Lancet. 2006; 367(9516): 1075–9. https://doi.org/10.1016/s0140-6736(06)68474-2
  3. Corrales-Medina V.F., Madjid M., Musher D.M. Role of acute infection in triggering acute coronary syndromes. Lancet Infect. Dis. 2010; 10(2): 83–92. https://doi.org/10.1016/s1473-3099(09)70331-7
  4. Drexler H. Nitric oxide and coronary endothelial dysfunction in humans. Cardiovasc. Res. 1999; 43(3): 572–9. https://doi.org/10.1016/ s0008-6363(99)00152-2
  5. Ludwig A., Lucero-Obusan C., Schirmer P., Winston C., Holodniy M. Acute cardiac injury events ≤30 days after laboratory-confirmed influenza virus infection among U.S. veterans, 2010–2012. BMC Cardiovasc. Disord. 2015; 15: 109. https://doi.org/10.1186/s12872- 015-0095-0
  6. Kwong J.C., Schwartz K.L., Campitelli M.A., Chung H., Crowcroft N.S., Karnauchow T., et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N. Engl. J. Med. 2018; 378(4): 345–53. https://doi.org/10.1056/nejmoa1702090
  7. Barnes M., Heywood A.E., Mahimbo A., Rahman B., Newall A.T., Macintyre C.R. Acute myocardial infarction and influenza: a meta-analysis of case–control studies. Heart. 2015; 101(21): 1738–47. https://doi.org/10.1136/heartjnl-2015-307691
  8. Warren-Gash C., Smeeth L., Hayward A.C. Influenza as a trigger for acute myocardial infarction or death from cardiovascular disease: a systematic review. Lancet Infect. Dis. 2009; 9(10): 601–10. https://doi.org/10.1016/s1473-3099(09)70233-6
  9. Fagnoul D., Pasquier P., Bodson L., Ortiz J.A., Vincent J.L., De Backer D. Myocardial dysfunction during H1N1 influenza infection. J. Crit. Care. 2013; 28(4): 321–7. https://doi.org/10.1016/j. jcrc.2013.01.010
  10. Tseng G.S., Hsieh C.Y., Hsu C.T., Lin J.C., Chan J.S. Myopericarditis and exertional rhabdomyolysis following an influenza A (H3N2) infection. BMC Infect. Dis. 2013; 13: 283. https://doi. org/10.1186/1471-2334-13-283
  11. Lobo M.L., Taguchi ., Gaspar H.A., Ferranti J.F., de Carvalho W.B., Delgado A.F. Fulminant myocarditis associated with the H1N1 influenza virus: case report and literature review. Rev. Bras. Ter. Intensiva. 2014; 26(3): 321–6. https://doi.org/10.5935/0103-507x.20140046
  12. Lubrano V., Balzan S. Roles of LOX-1 in microvascular dysfunction. Microvasc. Res. 2016; 105: 132–140. https://doi.org/10.1016/j. mvr.2016.02.006
  13. Kwok C.S., Aslam S., Kontopantelis E., Myint P.K., Zaman M.J., Buchan I., et al. Influenza, influenza-like symptoms and their association with cardiovascular risks: a systematic review and meta-analysis of observational studies. Int. J. Clin. Pract. 2015; 69(9): 928–37. https://doi.org/10.1111/ijcp.12646
  14. Gliozzi M., Scicchitano M., Bosco F., Musolino V., Carresi C., Scarano F., et al. Modulation of nitric oxide synthases by oxidized LDLs: role in vascular inflammation and atherosclerosis development. Int. J. Mol. Sci. 2019; 20(13): 3294. https://doi.org/10.3390/ ijms20133294
  15. Sessa W.C. eNOS at a glance. J. Cell. Sci. 2004; 117(Pt. 12): 2427– 9. https://doi.org/10.1242/jcs.01165
  16. Naseem K.M. The role of nitric oxide in cardiovascular diseases. Mol. Aspects. Med. 2005; 26(1-2): 33–65. https://doi.org/10.1016/j. mam.2004.09.003
  17. Kubes P., Suzuki M., Granger D.N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA. 1991; 88(11): 4651–5. https://doi.org/10.1073/pnas.88.11.4651
  18. Ghosh A.K., Vaughan D.E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 2012; 227(2): 493–507. https://doi.org/10.1002/jcp.22783
  19. Марченко В.А., Барашкова С.В., Зелинская И.А., Торопова Я.Г., Сорокин Е.В., Жилинская И.Н. Моделирование гриппозной инфекции у половозрелых крыс стока Wistar. Вопросы вирусологии. 2020; 65(3): 159–66. https://doi.org/10.36233/0507-4088- 2020-65-3-159-166
  20. Burry R.W. Immunocytochemistry: a Practical Guide for Biomedical Research. New York: Springer; 2010.
  21. Taylor C.R., Levenson R.M. Quantification of immunohistochemistry-issues concerning methods, utility and semiquantitative assessment II. Histopathology. 2006; 49(4): 411–24. https://doi. org/10.1111/j.1365-2559.2006.02513.x
  22. Heiss C., Rodriguez-Mateos A., Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid. Redox Signal. 2015; 22(14): 1230–42. https://doi.org/10.1089/ars.2014.6158
  23. Lobo S.M., Watanabe A.S.A., Salomão M.L.M., Queiroz F., Gandolfi J.V., de Oliveira N.E., et al. Excess mortality is associated with influenza A (H1N1) in patients with severe acute respiratory illness. J. Clin. Virol. 2019; 116: 62–8. https://doi.org/10.1016/j.jcv.2019.05.003
  24. Petrache I., Birukov K., Zaiman A.L., Crow M.T., Deng H., Wadgaonkar R., et al. Caspase dependent cleavage of myosin light chain kinase (MLCK) is involved om TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. FASEB J. 2003; 17(3): 407–16. https://doi.org/10.1096/fj.02-0672com
  25. Petrache I., Crow M.T., Neuss M., Garcia J.G. Central involvement of Rho family GTPases in TNF-alpha mediated bovine pulmonary endothelial cell apoptosis. Biochem. Biophys. Res. Commun. 2003; 306(1): 244–9. https://doi.org/10.1016/s0006-291x(03)00945-8
  26. Digard P., Elton D., Bishop K., Medcalf E., Weeds A., Pope B. Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments. J. Virol. 1999; 73(3): 2222–31. https://doi.org/10.1128/jvi.73.3.2222-2231.1999
  27. Wang S., Le T.Q., Kurihara N., Chida J., Cisse Y., Yano M., et al. Influenza virus-cytokine-protease cycle in the pathogenesis of vascular hyperpermeability in severe influenza. J. Infect. Dis. 2010; 202(7): 991–1001. https://doi.org/10.1086/656044
  28. Азарёнок А.А., Ляпина Л.А., Оберган Т.Ю., Харченко Е.П., Козлова Н.М., Жилинская И.Н. Изменение активности тканевого активатора плазминогена клеток эндотелия под воздействием вируса гриппа А и его поверхностных белков. Тромбоз, гемостаз, реология. 2014; (1): 3–8.
  29. Förstermann U., Sessa W.C. Nitric oxide synthases: regulation and function. Eur. Heart. J. 2012; 33(7): 829–37. https://doi. org/10.1093/eurheartj/ehr304
  30. Lubrano V., Balzan S. LOX-1 and ROS, inseparable factors in the process of endothelial damage. Free Radic. Res. 2014; 48(8): 841– 8. https://doi.org/10.3109/10715762.2014.929122
  31. Pirillo A., Norata G.D., Catapano A.L. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013; 2013: 152786. https://doi. org/10.1155/2013/152786
  32. Pritchard K.A. Jr., Ackerman A.W., Gross E.R., Stepp D.W., Shi Y., Fontana J.T., et al. Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase. J. Biol. Chem. 2001; 276(21): 17621–4. https://doi. org/10.1074/jbc.c100084200
  33. Moncada S., Palmer R.M., Higgs E.A. Nitric oxide: physiology, pathophysiology, pharmacology. Pharm. Rev. 1991; 43(2): 109–42.
  34. Ahmad R., Rasheed Z., Ahsan H. Biochemical and cellular toxicology of peroxynitrite: implications in cell death and autoimmune phenomenon. Immunopharmacol. Immunotoxicol. 2009; 31(3): 388–96. https://doi.org/10.1080/08923970802709197
  35. Natarajan M., Konopinski R., Krishnan M., Roman L., Bera A., Hongying Z., et al. Inhibitor-κB kinase attenuates Hsp90-dependent endothelial nitric oxide synthase function in vascular endothelial cells. Am. J. Physiol. Cell Physiol. 2015; 308(8): 673–83. https:// doi.org/10.1152/ajpcell.00367.2014
  36. Yasar Yildiz S., Kuru P., Toksoy Oner E., Agirbasli M. Functional stability of plasminogen activator inhibitor-1. Scientific World Journal. 2014; 2014: 858293. https://doi.org/10.1155/2014/858293
  37. Gando S., Levi M., Toh C. Disseminated intravascular coagulation. Nat. Rev. Dis. Primers. 2016; 2: 16037. https://doi.org/10.1038/ nrdp.2016.37
  38. Hallberg P., Smedje H., Eriksson N., Kohnke H., Daniilidou M., Öhman I., et al. Pandemrix-induced narcolepsy is associated with genes related to immunity and neuronal survival. EBioMedicine. 2019; 40: 595–604. https://doi.org/10.1016/j.ebiom.2019.01.041

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Марченко В.А., Барашкова С.В., Зелинская И.А., Торопова Я.Г., Рэмзи Э.С., Жилинская И.Н., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).