Картирование ДНК в капсиде гигантского бактериофага phiEL (Caudovirales: Myoviridae: Elvirus) с помощью аналитической электронной микроскопии
- Авторы: Трифонова Т.С.1,2, Моисеенко А.В.3,4, Буркальцева М.В.5, Шабурова О.В.5, Шайтан А.К.2, Крылов В.Н.5, Соколова О.С.2
-
Учреждения:
- ФГАОУ ВО «Российский университет дружбы народов», факультет физико-математических и естественных наук
- ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», биологический факультет, кафедра биоинженерии
- 2ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», биологический факультет, кафедра биоинженерии
- ФГБУН «Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук»
- ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
- Выпуск: Том 66, № 6 (2021)
- Страницы: 434-441
- Раздел: ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ
- URL: https://ogarev-online.ru/0507-4088/article/view/118210
- DOI: https://doi.org/10.36233/0507-4088-80
- ID: 118210
Цитировать
Аннотация
Введение. Гигантские phiKZ-подобные бактериофаги имеют внутри капсида уникальное белковое образование – внутреннее тело (ВТ), на которое навита суперскрученная ДНК. Стандартные подходы, используемые в криоэлектронной микроскопии (криоЭМ), не позволяют отличить эту структуру от окружающей её молекулы нуклеиновой кислоты фага. Ранее нами разработан аналитический подход для визуализации комплексов ДНК с белком на срезах бактериальных клеток Escherichia coli с использованием в качестве маркёра химического элемента фосфора. В настоящем исследовании мы адаптировали данную методику к значительно более мелким объектам – капсидам phiKZ-подобных бактериофагов.
Материал и методы. В исследовании применялись методы электронной микроскопии: аналитическая (АЭМ) (спектроскопия характеристических потерь энергии электронами, СХПЭЭ) и криоЭМ (сравнение изображений образцов с низкой и высокой дозой электронного облучения). Результаты. Мы изучили упаковку молекулы ДНК внутри капсидов гигантских бактериофагов phiEL из семейства Myoviridae, инфицирующих Pseudomonas aeruginosa. Построены карты распределения фосфора, показавшие несимметричное расположение ДНК внутри капсида.
Обсуждение. Мы разработали и применили методику визуализации ВТ с использованием высокоуглового темнопольного детектора (HAADF) и аналитического подхода СПЭМ-СХПЭЭ. Картирование распределения фосфора посредством СХПЭЭ и результаты криоЭМ выявили белковую структуру внутри капсида фагов phiEL в виде ВТ, размер которого был оценён с помощью теоретических расчётов.
Заключение. Разработанная методика может применяться для исследования распределения фосфора в других ДНК- или РНК-содержащих вирусах при сравнительно низких содержаниях искомого элемента.
Полный текст
Открыть статью на сайте журналаОб авторах
Т. С. Трифонова
ФГАОУ ВО «Российский университет дружбы народов», факультет физико-математических и естественных наук; ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», биологический факультет, кафедра биоинженерии
Email: fake@neicon.ru
ORCID iD: 0000-0003-2042-5244
115419, Москва, Россия
119234, Москва, Россия
РоссияА. В. Моисеенко
2ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», биологический факультет, кафедра биоинженерии; ФГБУН «Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук»
Email: fake@neicon.ru
ORCID iD: 0000-0003-1112-2356
119234, Москва, Россия
119334, Москва, Россия
РоссияМ. В. Буркальцева
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: fake@neicon.ru
ORCID iD: 0000-0003-3793-1354
105064, Москва, Россия
РоссияО. В. Шабурова
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: fake@neicon.ru
ORCID iD: 0000-0003-0368-3794
105064, Москва, Россия
РоссияА. К. Шайтан
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», биологический факультет, кафедра биоинженерии
Email: fake@neicon.ru
ORCID iD: 0000-0003-0312-938X
119234, Москва, Россия
РоссияВ. Н. Крылов
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: fake@neicon.ru
ORCID iD: 0000-0001-5775-5146
105064, Москва, Россия
РоссияО. С. Соколова
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», биологический факультет, кафедра биоинженерии
Автор, ответственный за переписку.
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-4678-232X
Соколова Ольга Сергеевна, д-р биол. наук, профессор РАН, профессор кафедры биоинженерии биологического факультета
119234, Москва, Россия
РоссияСписок литературы
- Ochman H., Lawrence J., Groisman E. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000; 405(6784): 299–304. https://doi.org/10.1038/35012500
- Duplessis C.A., Biswas B. A review of topical phage therapy for chronically infected wounds and preparations for a randomized adaptive clinical trial evaluating topical phage therapy in chronically infected diabetic foot ulcers. Antibiotics. 2020; 9(7): 377. https://doi.org/10.3390/antibiotics9070377
- Sharma R., Pielstick B., Bell K., Nieman T., Stubbs O., Yeates E., et al. A Novel, Highly Related Jumbo Family of Bacteriophages That Were Isolated Against Erwinia. Front. Microbiol. 2019; 10: 1533. https://doi.org/10.3389/fmicb.2019.01533
- Fokine A., Kostyuchenko V.A., Efimov A.V., Kurochkina L.P., Sykilinda N.N., Robben J., et al. A three-dimensional cryo-electron microscopy structure of the bacteriophage ϕKZ head. J. Mol. Biol. 2005; 352(1): 117–24. https://doi.org/10.1016/j.jmb.2005.07.018
- Sokolova O.S., Shaburova O.V., Pechnikova E.V., Shaytan A.K., Krylov S.V., Kiselev N.A., et al. Genome packaging in EL and Lin68, two giant phiKZ-like bacteriophages of P. aeruginosa. Virology. 2014; 468–470: 472–8. https://doi.org/10.1016/j.virol.2014.09.002
- Hertveldt K., Lavigne R., Pleteneva E., Sernova N., Kurochkina L., Korchevskii R., et al. Genome comparison of Pseudomonas aeruginosa large phages. J. Mol. Biol. 2005; 354(3): 536–45. https://doi.org/10.1016/j.jmb.2005.08.075
- Mesyanzhinov V.V., Robben J., Grymonprez B., Kostyuchenko V.A., Bourkaltseva M.V., Sykilinda N.N., et al. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J. Mol. Biol. 2002; 317(1): 1–19. https://doi.org/10.1006/jmbi.2001.5396
- Thomas J.A., Rolando M.R., Carroll C.A., Shen P.S., Belnap D.M., Weintraub S.T., et al. Characterization of Pseudomonas chlororaphis myovirus 201ϕ2-1 via genomic sequencing, mass spectrometry, and electron microscopy. Virology. 2008; 376(2): 330–8. https://doi.org/10.1016/j.virol.2008.04.004
- Krylov V.N., Smirnova T.A., Minenkova I.B., Plotnikova T.G., Zhazikov I.Z., Khrenova E.A. Pseudomonas bacteriophage contains an inner body in its capsid. Can. J. Microbiol. 1984; 30(6): 758–62. https://doi.org/10.1139/m84-116
- Wu W., Thomas J., Naiqian C., Black L., Steven A.C. Bubblegrams reveal the inner body of bacteriophage phiKZ. Science. 2012; 335(6065): 182. https://doi.org/10.1126/science.1214120
- Yakunina M., Artamonova T., Borukhov S., Makarova K.S., Severinov K., Minakhin L. A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage. Nucleic Acids res. 2015; 43(21): 10411–20. https://doi.org/10.1093/nar/gkv1095
- Danilova Y.A., Belousova V.V., Moiseenko A.V., Vishnyakov I.E., Yakunina M.V., Sokolova O.S. Maturation of Pseudo-Nucleus Compartment in P. aeruginosa, Infected with Giant phiKZ Phage. Viruses. 2020; 12(10): 1197. https://doi.org/10.3390/v12101197
- Matsko N., Klinov D., Manykin A., Demin V., Klimenko S. Atomic force microscopy analysis of bacteriophages phiKZ and T4. J. Electron. Microsc. (Tokyo). 2001; 50(5): 417–22. https://doi.org/10.1093/jmicro/50.5.417
- Fontana J., Jurado K.A., Cheng N., Ly N.L., Fuchs J.R., Gorelick R.J., et al. Distribution and Redistribution of HIV-1 Nucleocapsid Protein in Immature, Mature, and Integrase-Inhibited Virions: a Role for Integrase in Maturation. J. Virol. 2015; 89(19): 9765–80. https://doi.org/10.1128/JVI.01522-15
- Wu W., Leavitt J.C., Cheng N., Gilcrease E.B., Motwani T., Teschke C.M., et al. Localization of the houdinisome (Ejection Proteins) inside the bacteriophage P22 virion by bubblegram imaging. mBio. 2016; 7(4): e01152–16. https://doi.org/10.1128/mBio.01152-16
- Wu W., Newcomb W.W., Cheng N., Aksyuk A., Winkler D.C., Steven A.C. Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging. J. Virol. 2016; 90(10): 5176–86. https://doi.org/10.1128/JVI.03224-15
- Shebanova A., Ismagulova T., Solovchenko A., Baulina O., Lobakova E., Ivanova A., et al. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma. 2017; 254(3): 1323–40. https://doi.org/10.1007/s00709-016-1024-5
- Scotuzzi M., Kuipers J., Wensveen D.I., De Boer P., Hagen K.C.W., Hoogenboom J.P., et al. Multi-color electron microscopy by element- guided identification of cells, organelles and molecules. Sci. Rep. 2017; 7: 45970. https://doi.org/10.1038/srep45970
- Allard-Vannier E., Hervé-Aubert K., Kaaki K., Blondy T., Shebanova A., Shaitan K.V., et al. Folic acid-capped PEGylated magnetic nanoparticles enter cancer cells mostly via clathrin-dependent endocytosis. Biochim. Biophys. Acta Gen. Subj. 2017; 1861(6): 1578–86. https://doi.org/10.1016/j.bbagen.2016.11.045
- Loiko N., Danilova Y., Moiseenko A., Kovalenko V., Tereshkina K., Tutukina M., et al. Morphological peculiarities of the DNA-protein complexes in starved Escherichia coli cells. PLoS One. 2020; 15(10): e0231562. https://doi.org/10.1371/journal.pone.0231562
- Bazett-Jones D.P., Ottensmeyer F.P. Phosphorus distribution in the nucleosome. Science. 1981; 211(4478): 169–70. https://doi.org/10.1126/science.7444457
- Ottensmeyer F.P., Andrew J.W. High-resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. J. Ultrastruct. Res. 1980; 72(3):336–48. https://doi.org/10.1016/s0022-5320(80)90069-6
- Aronova M.A., Kim Y.C., Harmon R., Sousa A.A., Zhang G., Leapman R.D. Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST). J. Struct. Biol. 2007; 160(1): 35–48. https://doi.org/10.1016/j.jsb.2007.06.008
- Nevsten P., Evilevitch A., Wallenberg R. Chemical mapping of DNA and counter-ion content inside phage by energy-filtered TEM. J. Biol. Phys. 2012; 38(2): 229–40. https://doi.org/10.1007/s10867-011-9234-8
- Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 1989.
- Печникова Е.В., Кирпичников М.П., Соколова О.С. Радиационные повреждения в криомикроскопии: всегда ли во вред? Природа. 2015; (3): 25–9.
- Mishyna M., Volokh O., Danilova Ya., Gerasimova N., Pechnikova E., Sokolova O.S. Effects of radiation damage in studies of protein-DNA complexes by cryo-EM. Micron. 2017; 96: 57–64. https://doi.org/10.1016/j.micron.2017.02.004
- Petrov A.S., Harvey S.C. Packaging double-helical DNA into viral capsids: structures, forces, and energetics. Biophys. J. 2008; 95(2):497–502. https://doi.org/10.1529/biophysj.108.131797
- Буркальцева М.В., Крылов В.Н., Плетенева Е.А., Шабурова О.В., Крылов С.В., Волкарт Г., и др. Феногенетическая характеристика группы гигантских φKZ-подобных бактериофагов Pseudomonas aeruginosa. Генетика. 2002; 38(11): 1470–9.
- Bagrov D.V., Glukhov G.S., Moiseenko A.V., Karlova M.G., Litvinov D.S., Zaitsev P.А., et al. Structural characterization of β-propiolactone inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particles. Microsc. Res. Tech. 2021. https://doi.org/10.1002/jemt.23931
Дополнительные файлы
