Проблема применения интерферонов при новой коронавирусной инфекции COVID-19 (Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus)

Обложка

Цитировать

Полный текст

Аннотация

К концу 2021 г. в мире зарегистрировано около 200 исследований по изучению влияния интерферонов (ИФН, IFN) на заболеваемость новой коронавирусной инфекцией COVID-19 (Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus) и её течение, при этом количество таких работ неуклонно возрастает. В настоящем обзоре рассмотрены основные вопросы применения препаратов IFN при этом заболевании. Поиск литературы проводился по базам данных PubMed, Scopus, Cochrane Library, Web of Science, РИНЦ, а также в базе препринтов Google Scholar с использованием доступных поисковых запросов «MeSH для коронавируса», «SARS-CoV-2», «препараты IFN», «COVID-19». Следует считать показанным раннее назначение интерферонотерапии (в первые 5 сут поступления пациента) в случаях лёгкого и среднетяжёлого течения COVID-19, чтобы воспользоваться узким окном терапевтического воздействия IFN. Для контроля и подавления репликации возбудителя требуется лечение препаратами этого класса и другими эффективными противовирусными средствами, ингибирующими репродукцию SARS-CoV-2 и индуцирующими ряд интерферон-стимулированных генов (interferon-stimulated genes, ISG), продукты экспрессии которых контролируют противовирусную активность и запускают механизмы элиминации патогена. IFN I типа (IFN-I) проявляют мощные провоспалительные свойства и активируют широкий спектр клеток различных типов, реагирующих на стимуляцию этими молекулами и внедрение вируса. В то же время IFN-III обеспечивают местный противовирусный иммунитет на слизистых оболочках, не приводя к развитию сильного системного провоспалительного ответа, присущего IFN-I. Использование препаратов IFN в терапии новой коронавирусной инфекции требует осторожного и дифференцированного подхода, так как в тяжёлых случаях они способны усугублять вирусный патогенез, обусловливая чрезмерную интенсивность воспалительных реакций. Уникальные биологические свойства веществ этого класса позволяют рассматривать их в качестве терапевтических средств с большим потенциалом применения у пациентов с COVID-19.

Об авторах

Ф. И. Ершов

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного
академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации

Автор, ответственный за переписку.
Email: felixershov@gmail.com
ORCID iD: 0000-0002-4780-7560

Ершов Феликс Иванович – академик РАН, д.м.н., профессор, главный научный сотрудник 

123098, Москва, Россия

eLIBRARY SPIN 3076-4864; 

Россия

А. Н. Наровлянский

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного
академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации

Email: narovl@yandex.ru

Наровлянский Александр Наумович – д.б.н., профессор, главный научный сотрудник, заведующий лабораторией

123098, Москва, Россия;

eLIBRARY SPIN 9015-5536

Россия

Список литературы

  1. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 14 (27.12.2021). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/041/original/%D0%92%D0%9C%D0%A0_COVID-19_V14_27-12-2021.pdf (accessed January 28, 2022).
  2. Ершов Ф.И., Наровлянский А.Н. Интерфероны и индукторы интерферонов. В кн.: Хаитова Р.М., Атауллаханова Р.И., Шульженко А.Е., ред. Иммунотерапия: руководство для врачей. М.: ГЭОТАР-Медиа; 2018: 123–47.
  3. Schreiber G. The role of type I interferons in the pathogenesis and treatment of COVID-19. Front. Immunol. 2020; 11: 595739. https://doi.org/10.3389/fimmu.2020.595739
  4. ClinicalTrials.gov is a database of privately and publicly funded clinical studies conducted around the world. Available at: https://clinicaltrials.gov (accessed January 27, 2022).
  5. Walz L., Cohen A.J., Rebaza A.P., Vanchieri J., Slade M.D., Dela Cruz C.S., et al. JAK-inhibitor and type I interferon ability to produce favorable clinical outcomes in COVID-19 patients: a systematic review and meta-analysis. BMC Infect. Dis. 2021; 21(1): 47. https://doi.org/10.1186/s12879-020-05730-z
  6. Falzarano D., de Witt E., Rasmussen A., Feldmann F., Okumura A., Scott D.P., et al. Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat. Med. 2013; 19(10): 1313–7. https://doi.org/10.1038/nm.3362
  7. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. Treatment of SARS with human interferons. Lancet. 2003; 362(9380): 293–4. https://doi.org/10.1016/s0140-6736(03)13973-6
  8. Sainz B., Mossel E.C., Peters C.J., Garry R.F. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARSCoV). Virology. 2004; 329(1): 11–7. https://doi.org/10.1016/j.vi-rol.2004.08.011
  9. Brzoska J., von Eick H., Hündgen M. Interferons in the therapy of severe coronavirus infections: a critical analysis and recollection of a forgotten therapeutic regimen with interferon beta. Drug Res. (Stuttg.). 2020; 70(7): 291–7. https://doi.org/10.1055/a-1170-4395
  10. Hung I.F., Lung K.-C., Tso E.Y., Liu R., Chung T.W., Chu M.Y., et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020; 395(10238): 1695–704. https://doi.org/10.1016/S0140-6736(20)31042-4
  11. Lee A.J., Ashkar A.A. The dual nature of type I and type II interferons. Front. Immunol. 2018; 9: 2061. https://doi.org/10.3389/fimmu.2018.02061
  12. Mosaddeghi P., Shahabinezhad F., Dehghani Z., Farahmandnejad M., et al. Therapeutic Approaches for COVID-19 Based on the Interferon-mediated Immune Responses. Curr. Signal Transduct. Ther. 2021; 16(3): 269–79. https://doi.org/10.2174/1574362416666210120104636
  13. Lokugamage K.G., Hage A., de Vries M., Valero-Jimenez A.M., Schindewolf C., Dittmann M., et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J. Virol. 2020; 94(23): e01410-20. https://doi.org/10.1128/JVI.01410-20
  14. Zhou Q., Chen V., Shannon C.P., Wei X.S., Xiang X., Wang X., et al. Interferon-a2b Treatment for COVID-19. Front. Immunol. 2020; 11: 1061. https://doi.org/10.3389/fimmu.2020.01061
  15. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3
  16. Wang N., Zhan Y., Zhu L., Hou Z., Liu F., Song P., et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe. 2020; 28(3): 455–64.e2. https://doi.org/10.1016/j.chom.2020.07.005
  17. Mantlo E., Bukreyeva N., Maruyama J., Paessler S., Huang C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020; 179: 104811. https://doi.org/10.1016/j.antiviral.2020.104811
  18. Pandit A., Bhalani N., Bhushan B.L.S., Koradia P., Gargiya S., Bhomia V., et al. Efficacy and safety of pegylated interferon alfa-2b in moderate COVID-19: A phase II, randomized, controlled, open-label study. Int. J. Infect. Dis. 2021; 105: 516–21. https://doi.org/10.1016/j.ijid.2021.03.015
  19. Понежева Ж.Б., Гришаева А.А., Маннанова И.В., Купченко А.Н., Яцышина С.Б., Краснова С.В., и др. Профилактическая эффективность рекомбинантного интерферона α-2b в условиях пандемии COVID-19. Лечащий врач. 2020; (12): 56–60. https://doi.org/10.26295/OS.2020.29.66.011
  20. Omrani A.S., Saad M.M., Baig K., Bahloul A., Abdul-Matin M., Alaidaroos A.Y., et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect. Dis. 2014; 14(11): 1090–5. https://doi.org/10.1016/S1473-3099(14)70920-X
  21. Feldstein L.R. Rose E.B., Horwitz S.M., Collins J.P., Newhams M.M., Son M.B.F., et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N. Engl. J. Med. 2020; 383(4): 334– 46. https://doi.org/10.1056/NEJMoa2021680
  22. Weisberg S.P., Connors T.J., Zhu Y., Baldwin M.R., Lin W.H., Wontakal S., et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat. Immunol. 2021; 22(1): 25–31. https://doi.org/10.1038/s41590-020-00826-9
  23. Borrelli M., Corcione A., Castellano F., Fiori Nastro F., Santamaria F. Coronavirus disease 2019 in children. Front. Pediatr. 2021; 9: 668484. https://doi.org/10.3389/fped.2021.668484
  24. Методические рекомендации «Особенности клинических проявлений и лечения заболевания, вызванного новой коронавирусной инфекцией (COVID-19) у детей». Версия 1 (24.04.2020) Минздрав РФ. Available at: https://static-3.rosminzdrav.ru/system/attachments/attaches/000/050/100/original/24042020_child_COVID-19_1_Final.pdf (accessed January 24, 2022).
  25. Мазанкова Л.Н., Горбунов С.Г., Самитова Э.Р. Значение интерферонотерапии при COVID-19 у детей. Детские инфекции. 2021; 20(1): 34–8. https://doi.org/10.22627/2072-8107-2021-20-1-34-38
  26. Loske, J., Röhmel, J., Lukassen S., Stricker S., Magalhães V.G., Liebig J., et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat. Biotechnol. 2021. https://doi.org/10.1038/s41587-021-01037-9
  27. Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y., et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020; 26(4): 502–5. https://doi.org/10.1038/s41591-020-0817-4
  28. Сафина А.И., Шарипова О.В., Лутфуллин И.Я., Наумова О.С., Даминова М.А. Современные возможности интерферонов в лечении детей с COVID-19. Медицинский совет. 2021; (1): 59–65. https://doi.org/10.21518/2079-701X-2021-1-59-65
  29. Новая коронавирусная инфекция COVID-19 у детей. Эффективная фармакотерапия. Педиатрия. 2020; 16(34): 32–34.
  30. Robinson J. Everything you need to know about the COVID-19 therapy trials. Pharm. J. 2021. https://doi.org/10.1211/PJ.2021.20208126 Available at: https://pharmaceutical-journal.com/article/feature/everything-you-need-to-know-about-the-covid-19-therapy-trials#Interferons (accessed January 20, 2022).
  31. Monk P.D., Marsden R.J., Tear V.J., Brookes J., Batten T.N., Mankowski M., et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2021; 9(2): 196–206. https://doi.org/10.1016/S2213-2600(20)30511-7
  32. Kim Y.M., Shin E.C. Type I and III interferon responses in SARSCoV-2 infection. Exp. Mol. Med. 2021; 53(5): 750–60. https://doi.org/10.1038/s12276-021-00592-0
  33. Garcia-del-Barco D., Risco-Acevedo D., Berlanga-Acosta J., Martos-Benítez F.D., Guillén-Nieto G. Revisiting pleiotropic effects of type I interferons: rationale for its prophylactic and therapeutic use against SARS-CoV-2. Front. Immunol. 2021; 12: 655528. https://doi.org/10.3389/fimmu.2021.655528
  34. Juul S., Nielsen E.E., Feinberg J., Siddiqui F., Jørgensen C.K., Barot E., et al. Interventions for treatment of COVID-19: Second edition of a living systematic review with meta-analyses and trial sequential analyses (The LIVING Project). PLoS One. 2021; 16(3): e0248132. https://doi.org/10.1371/journal.pone.0248132
  35. Repurposed Antiviral Drugs for Covid-19 – Interim WHO Solidarity Trial Results. WHO Solidarity Trial Consortium*. N. Engl. J. Med. 2021; 384(6): 497–511. https://doi.org/10.1056/NEJMoa2023184
  36. Davoudi-Monfared E., Rahmani H., Khalili H., Hajiabdolbaghi M., Salehi M., Abbasian L., et al. A randomized clinical trial of the efficacy and safety of interferon beta-1a in treatment of severe COVID-19. Antimicrob. Agents Chemother. 2020; 64(9): e0106120. https://doi.org/10.1128/AAC.01061-20
  37. Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N., et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020; 369(6504): 718–24. https://doi.org/10.1126/science.abc6027
  38. Lucas C., Wong P., Klein J., Castro T.B.R., Silva J., Sundaram M., et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020; 584(7821): 463–9. https://doi.org/10.1038/s41586-020-2588-y
  39. Lee J.S., Park S., Jeong H.W., Ahn J.Y., Choi S.J., Lee H., et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 2020; 5(49): eabd1554. https://doi.org/10.1126/sciimmunol.abd1554
  40. Dorgham K., Neumann A.U., Decavele M., Luyt C.E., Yssel H., Gorochov G. Considering personalized interferon beta therapy for COVID-19. Antimicrob. Agents Chemother. 2021; 65(4): e0006521. https://doi.org/10.1128/AAC.00065-21
  41. Bastard P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.H., Zhang Y., et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020; 370(6515): eabd4585. https://doi.org/10.1126/science.abd4585
  42. Sosa J.P., Ferreira Caceres M.M., Ross Comptis J., Quiros J., Príncipe-Meneses F.S., Riva-Moscoso A., et al. Effects of Interferon Beta in COVID-19 adult patients: Systematic Review. Infect. Chemother. 2021; 53(2): 247–60. https://doi.org/10.3947/ic.2021.0028
  43. Interferon beta-1b: Drug information. Available at: https://www.uptodate.com/contents/interferon-beta-1b-drug-information (accessed January 20, 2022).
  44. IMMUKIN 2 × 106 IU (0.1 mg) solution for injection. Available at: https://www.medicines.org.uk/emc/product/10821/smpc (accessed January 24, 2022).
  45. ACTIMMUNE® (Interferon gamma-1b). Available at: https://www.actimmune.com (accessed January 24, 2022).
  46. Киселёв О.И., Ершов Ф.И., Деева Э.Г. Интерферон-гамма: новый цитокин в клинической практике. Ингарон®. М.: Димитрейд График Групп; 2007.
  47. Bello-Rivero I., Garcia-Vega Y., Duncan-Roberts Y., Vazquez-Blomquistc D., Santana-Milian H., Besada-Perez V., et al. HeberFERON, a new formulation of IFNs with improved pharmacodynamics: Perspective for cancer treatment. Semin. Oncol. 2018; 45(1-2): 27–33. https://doi.org/10.1053/j.seminoncol.2018.04.007
  48. Мясников А.Л., Бернс С.А., Талызин П.А., Ершов Ф.И. Интерферон гамма в терапии пациентов с COVID-19 среднетяжёлого течения. Вопросы вирусологии. 2021; 66(1): 47–54. https://doi.org/10.36233/0507-4088-24
  49. Белевский А.С., Бернс С.А., Ларцева О.А., Мясников А.Л., Надарая В.М., Талызин П.А. Эффективность и безопасность гамма-интерферона при лечении внебольничной пневмонии: результаты открытого рандомизированного исследования IN/100000-317. Медицина. 2019; 7(4): 110–25. https://doi.org/10.29234/2308-9113-2019-7-4-110-125
  50. Idelsis E.M.I., Pérez-Escribano J., Duncan-Roberts Y., Dania V.B.D., Bequet-Romero M., Baez-Rodríguez L., et al. Effect of combination of interferon alpha-2b and interferon-gamma or interferon alpha2b alone for elimination of SARS-CoV-2 viral RNA. Preliminary results of a randomized controlled clinical trial. medRxiv. 2020. Preprint. https://doi.org/10.1101/2020.07.29.20164251
  51. Karki R., Sharma B.R., Tuladhar S., Williams E.P., Zalduondo L., Samir P., et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021; 184(1): 149-168. e17. https://doi.org/10.1016/j.cell.2020.11.025
  52. Broggi A., Ghosh S, Sposito B., Spreafico R., Balzarini F., Lo Cascio A., et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science. 2020; 369(6504): 706–12. https://doi.org/10.1126/science.abc3545
  53. Prokunina-Olsson L., Alphonse N., Dickenson R.E., Durbin J.E., Glenn J.S., Hartmann R., et al. COVID-19 and emerging viral infections: the case for interferon lambda. J. Exp. Med. 2020; 217(5): e20200653. https://doi.org/10.1084/jem.20200653
  54. Rivera A. Interferon Lambda’s new role as regulator of neutrophil function. J. Interferon. Cytokine Res. 2019; 39(10): 609–17. https://doi.org/10.1089/jir.2019.0036
  55. Dinnon K.H. 3rd, Leist S.R., Schäfer A., Edwards C.E., Martinez D.R., Montgomery S.A., et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature. 2020; 586(7830): 560–6. https://doi.org/10.1038/s41586-020-2708-8
  56. Andreakos E., Tsiodras S. COVID-19: lambda interferon against viral load and hyperinflammation. EMBO Mol. Med. 2020; 12(6): e12465. https://doi.org/10.15252/emmm.202012465
  57. Feld J.J., Kandel C., Biondi M.J., Kozak R.A., Zahoor M.A., Lemieux C., et al. Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respir. Med. 2021; 9(5): 498–510. https://doi.org/10.1016/s2213-2600(20)30566-x
  58. Jagannathan P., Andrews J.R., Bonilla H. et al. Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial. Nat. Commun. 2021; 12(1): 1967. https://doi.org/10.1038/s41467-021-22177-1
  59. Ben-Zuk N., Dechtman I.D., Henn I., Weiss L., Afriat A., Krasner E., et al. Potential prophylactic treatments for COVID-19. Viruses. 2021; 13(7): 1292. https://doi.org/10.3390/v13071292
  60. Eiger BioPharmaceuticals announces first patients dosed with peginterferon lambda in phase 3 Together study of newly diagnosed COVID-19 outpatients. Available at: https://ir.eigerbio.com/news-releases/news-release-details/eiger-biopharmaceuticals-announces-first-patients-dosed (accessed January 15, 2022).
  61. ClinicalTrials.gov. COVID-19 Information. Clinical trial number NCT04331899; NCT04354259; NCT04344600; NCT04388709; NCT04534673. Available at: https://clinicaltrials.gov (accessed January 24, 2022).
  62. Tuta-Quintero E., Ayala C.M., Santos A.M. Eficacia y seguridad del peginterferón lambda para la Covid-19, indicios de un nuevo antiviral. Boletín de Malariología y Salud Ambiental. 2021; 61(2). Available at: http://iaes.edu.ve/iaespro/ojs/index.php/bmsa/article/view/266 (in Spanish) (accessed January 24, 2022).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ершов Ф.И., Наровлянский А.Н., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».