Биологическая характеристика и пермиссивность к вирусам штамма диплоидных клеток почки летучей мыши нетопыря Натузиуса (Pipistrellus nathusii Keyserling & Blasius, 1839; (Chiroptera: Microchiroptera: Vespertilionidae)
- Авторы: Поволяева О.С.1, Юрков С.Г.1, Лаптева О.Г.1, Колбасова О.Л.1, Чадаева А.А.1, Кольцов А.Ю.1, Синдрякова И.П.1, Власов М.Е.1, Живодёров С.П.1, Луницин А.В.1
-
Учреждения:
- ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
- Выпуск: Том 66, № 1 (2021)
- Страницы: 29-39
- Раздел: ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ
- URL: https://ogarev-online.ru/0507-4088/article/view/118159
- DOI: https://doi.org/10.36233/0507-4088-12
- ID: 118159
Цитировать
Полный текст
Аннотация
Введение. Летучие мыши (Microchiroptera) являются эпидемиологически важным естественным резервуаром вирусов различных таксономических групп, включая возбудителей особо опасных болезней человека и животных. Учитывая актуальность арбовирусных инфекций, представляется целесообразным проведение исследований по изучению спектра чувствительности клеток из тканей летучих мышей, обитающих и мигрирующих на территории Российской Федерации, к вирусам векторных инфекций сельскохозяйственных животных.
Цель исследования - получение диплоидного штамма клеток почечной ткани летучей мыши (ПЛМ) вида нетопырь лесной, или нетопырь Натузиуса (Pipistrellus nathusii), изучение его биологических характеристик, а также оценка пермиссивности полученной клеточной культуры к вирусам блютанга, лихорадки долины Рифт (ЛДР), заразного узелкового дерматита (ЗУД) крупного рогатого скота (КРС), миксомы кроликов (Myxomatosis cuniculi), фибромы Шоупа, африканской чумы лошадей (АЧЛ) и африканской чумы свиней (АЧС).
Материал и методы. Донорами органов служили 2 особи клинически здоровых самцов летучей мыши Р. nathusii. Для получения диплоидного штамма культуры клеток почки этого вида и изучения свойств полученной клеточной культуры градации от 6-го и выше пассажных уровней использовали традиционные цитологические, вирусологические и молекулярные методы. Определяли пермиссивность данного штамма к вирусам блютанга, ЛДР, ЗУД, миксомы кроликов, фибромы Шоупа, АЧЛ и АЧС.
Результаты. Формирование конфлюэнтного монослоя наблюдали через 72 ч, при этом индекс пролиферации (ИП) был равен 2,7-3,3. Клеточный монослой сохранялся без смены среды в течение 45 сут (срок наблюдения). Показана стабильность кариотипа в условиях непрерывного субкультивирования на уровне 36-го пассажа. Культура клеток получила наименование «Штамм диплоидных клеток почки летучей мыши Pipistrellus nathusii (Diploid cell line Pipistrellus nathusii kidney)»; установлена её пермиссивность к вирусам блютанга, ЛДР, ЗУД и миксомы кроликов.
Обсуждение. Чувствительность полученного клеточного материала к вирусам блютанга и ЛДР согласуется с данными об идентификации реовируса и возбудителя ЛДР у египетских фруктовых летучих мышей (Rousettus aegyptiacus), а пермиссивность данного штамма к возбудителям ЗУД и миксомы кроликов - с результатами обнаружения поксвирусов у вида поздний кожан (Eptesicus fuscus).
Выводы. Получен и паспортизирован штамм диплоидных клеток ПЛМ P nathusii. Установленная пермиссивность к вирусам блютанга, ЛДР, ЗУД и миксомы кроликов позволяет использовать его для выделения и изучения этих патологических агентов. Репродукция возбудителей в клетках данного штамма из тканей ПЛМ вида P nathusii, обитающего и мигрирующего на территории европейской части Российской Федерации, указывает на его потенциальную роль в эпидемиологии значимых инфекций, особенно трансмиссивных.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
О. С. Поволяева
ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
Email: 2741188@mail.ru
ORCID iD: 0000-0002-5635-6677
Поволяева Ольга Сергеевна - аспирант, микробиолог.
601125, Владимирская область, пос. Вольгинский РоссияС. Г. Юрков
ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
Автор, ответственный за переписку.
Email: patronn13@rambler.ru
ORCID iD: 0000-0002-6801-9424
Юрков Сергей Григорьевич - доктор биологических наук, профессор, главный научный сотрудник.
601125, Владимирская область, пос. Вольгинский
РоссияО. Г. Лаптева
ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
Email: oksana-lapteva@rambler.ru
ORCID iD: 0000-0002-4435-8368
Лаптева Оксана Георгиевна - кандидат вет. наук, старший научный сотрудник.
601125, Владимирская область, пос. Вольгинский
РоссияО. Л. Колбасова
ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
Email: olgakolbasova@gmail.com
ORCID iD: 0000-0001-5153-0982
Колбасова Ольга Львовна - кандидат биологических наук, доцент, ведущий научный сотрудник.
601125, Владимирская область, пос. Вольгинский
РоссияА. А. Чадаева
ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
Email: a_doct_or@mail.ru
ORCID iD: 0000-0002-9615-9758
Чадаева Анна Александровна – микробиолог.
601125, Владимирская область, пос. Вольгинский
РоссияА. Ю. Кольцов
ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
Email: kolcov.andrew@gmail.com
ORCID iD: 0000-0003-3294-6602
Кольцов Андрей Юрьевич - кандидат биологических наук, ведущий научный сотрудник.
601125, Владимирская область, пос. Вольгинский
РоссияИ. П. Синдрякова
ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
Email: sindryakova.irina@yandex.ru
ORCID iD: 0000-0002-5947-9402
Синдрякова Ирина Петровна - кандидат биологических наук, заведующий сектором лаборатории диагностики и мониторинга.
601125, Владимирская область, пос. Вольгинский
РоссияМ. Е. Власов
ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
Email: VlasovMikhail1993@yandex.ru
ORCID iD: 0000-0002-8324-3256
Власов Михаил Евгеньевич - заместитель руководителя группы.
601125, Владимирская область, пос. Вольгинский
РоссияС. П. Живодёров
ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
Email: zhivoderov-serg@mail.ru
ORCID iD: 0000-0002-4919-3080
Живодёров Сергей Петрович - кандидат вет. наук, заведующий научно-экспериментальным отделом.
601125, Владимирская область, пос. Вольгинский
РоссияА. В. Луницин
ФГБНУ Федеральный исследовательский центр вирусологии и микробиологии Минобрнауки России
Email: lunicyn@mail.ru
ORCID iD: 0000-0002-5043-446X
Луницин Андрей Владимирович - старший научный сотрудник, заместитель директора по производству и качеству.
601125, Владимирская область, пос. Вольгинский
РоссияСписок литературы
- IUCN SSC Bat Specialist Group. Available at: https://www.iucn.org/commissions/ssc-groups/mammals/specialist-groups-a-e/bat (accessed January 18, 2021).
- Baker M.L., Schountz T., Wang L.F. Antiviral immune responses of bats: a review. Zoonoses Public Health. 2013; 60(1): 104-16. https://doi.org/10.1111/j.1863-2378.2012.01528.x.
- Calisher C.H., Childs J.E., Field H.E., Holmes K.V, Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006; 19(3): 531-45. https://doi.org/10.1128/CMR.00017-06.
- Wang L.F., Walker P.J., Poon L.L. Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’ as reservoirs for emerging viruses? Curr. Opin. Virol. 2011; 1(6): 649-57. https://doi.org/10.1016/j.coviro.2011.10.013.
- Drexler J.F., Corman V.M., Wegner T., Tateno A.F., Zerbinati R.M., Gloza-Rausch F., et al. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 2011; 17(3): 449-56. https://doi.org/10.3201/eid1703.100526.
- Moratelli R., Calisher C.H. Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? Mem. Inst. Oswaldo Cruz. 2015; 110(1): 1-22. https://doi.org/10.1590/0074-02760150048.
- Макаров В.В., Лозовой Д.А. Вирусы и рукокрылые. Эпидемиологические особенности восприимчивости. Пест-Менеджмент. 2017; (4): 13-22.
- Vazquez-Moron S., Juste J., Ibanez C., Berciano J.M., Echevarria J.E. Phylogeny of European Bat Lyssavirus 1 in Eptesicus isabellinus Bats, Spain. Emerg. Infect. Dis. 2011; 17(3): 520-3. https://doi.org/10.3201/eid1703.100894.
- Ceballos N.A., Moron S.V., Berciano J.M., Nicolas O., Lopez C.A., Juste J., et al. Novel lyssavirus in Bat, Spain. Emerg. Infect. Dis. 2013; 19(5): 793-5. https://doi.org/10.3201/eid1905.121071.
- Ge X.Y., Li J.L., Yang X.L., Chmura A.A., Zhu G., Epstein J.H., et al. Isolation and characterization of a bat SARS-like coronavi-rus that uses the ACE2 receptor. Nature. 2013; 503(7477): 535-8. https://doi.org/10.1038/nature12711.
- Janoska M., Vidovszky M., Molnar V., Liptovszky M., Harrach B., Benko M. Novel adenoviruses and herpesviruses detected in bats. Vet. J. 2011; 189(1): 118-21. https://doi.org/10.1016/j.tvjl.2010.06.020.
- Leroy E.M., Kumulungui B., Pourrut X., Rouquet P., Hassanin A., Yaba P., et al. Fruit bats as reservoirs of Ebola virus. Nature. 2005; 438(7068): 575-6. https://doi.org/10.1038/438575a.
- Kohl C., Lesnik R., Brinkmann A., Ebinger A., Radonic A., Nitsche A., et al. Isolation and characterization of three mammalian orthoreo-viruses from European bats. PLoS One. 2012; 7(8): e43106. https://doi.org/10.1371/journal.pone.0043106.
- Chua K.B., Koh C.L., Hooi P.S., Wee K.F., Khong J.H., Chua B.H., et al. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect. 2002; 4(2): 145-51. https://doi.org/10.1016/s1286-4579(01)01522-2.
- Halpin K., Young P.L., Field H.E., Mackenzie J.S. Isolation of Hen-dra virus from pteropid bats: a natural reservoir of Hendra virus. J. Gen. Virol.2000; 81(Pt. 8): 1927-32. https://doi.org/10.1099/0022-1317-81-8-1927.
- Albarino C.G., Foltzer M., Towne J.S., Rowe L.A., Campbell S., Jaramillo C.M., et al. Novel paramyxovirus associated with severe acute febrile disease, South Sudan and Uganda, 2012. Emerg. Infect. Dis. 2014; 20(2): 211-6. https://doi.org/10.3201/eid2002.131620.
- Waruhiu C., Ommeh S., Obanda V., Agwanda B., Gakuya F., Ge X.Y, et al. Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses. Virol. Sin. 2017; 32(2): 101-14. https://doi.org/10.1007/s12250-016-3930-2.
- Zhang H., Todd S., Tachedjian M., Barr J.A., Luo M., Yu M., et al. A novel bat herpesvirus encodes homologues of major histocompatibility complex classes I and II, C-type lectin, and a unique family of immune-related genes. J. Virol. 2012; 86(15): 8014-30. https://doi.org/10.1128/jvi.00723-12.
- Graves D.C., Ferrer J.F. In vitro transmission and propagation of the bovine leukemia virus in monolayer cell cultures. Cancer Res. 1976; 36(11 Pt. 1): 4152-9.
- Sandekian V., Lim D., Prud’homme P., Lemay G. Transient high level mammalian reovirus replication in a bat epithelial cell line occurs without cytopathic effect. Virus Res. 2013; 173(2): 327-35. https://doi.org/10.1016/j.virusres.2013.01.010.
- Slater T., Eckerle I., Chang K. Bat lung epithelial cells show greater host species-specific innate resistance than MDCK cells to human and avian influenza viruses. Virol. J. 2018; 15(1): 68. https://doi.org/10.1186/s12985-018-0979-6.
- Jordan I., Horn D., Oehmke S., Leendertz F.H., Sandig V. Cell lines from the Egyptian fruit bat are permissive for modified vaccinia Ankara. Virus Res. 2009; 145(1): 54-62. https://doi.org/10.1016/).virusres.2009.06.007.
- Crameri G., Todd S., Grimley S., McEachern J.A., Marsh G.A., Smith C., et al. Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS One. 2009; 4(12): e8266. https://doi. org/10.1371/journal.pone.0008266.
- Banerjee A., Misra V., Schountz T., Baker M.L. Tools to study pathogen-host interactions in bats. Virus Res. 2018; 248: 5-12. https://doi.org/10.1016.
- Biesold S.E., Ritz D., Gloza-Rausch F., Wollny R., Drexler J.F., Corman V.M., et al. Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum. PLoS One. 2011; 6(11): e28131. https://doi.org/10.1371/journal.pone.0028131.
- Zhou P., Chionh Y.T., Irac S.E., Ahn M., Jia Ng J.H., Fossum E., et al. Unlocking bat immunology: establishment of Pteropus alec-to bone marrow-derived dendritic cells and macrophages. Sci. Rep. 2016; 6: 38597. https://doi.org/10.1038/srep38597.
- Irving A.T., Rozario P., Kong P., Luko K., Gorman J.J., Hastie M.L., et al. Robust dengue virus infection in bat cells and limited innate immune responses coupled with positive serology from bats in In-doMalaya and Australasia. Cell. Mol. Life Sci. 2020; 77(8): 1607-22. https://doi.org/10.1007/s00018-019-03242-x.
- Жуков В.А., Шишкина Л.Н., Сафатов A.C., Сергеев A.A., Пьян-ков О.В., Петрищенко В.А. и др. Валидация модифицированного алгоритма прогнозирования восприимчивости хозяина к вирусам с учетом параметров восприимчивости первичных культур клеток-мишеней и факторов врожденного иммунитета. Вестник Российской академии медицинских наук. 2010; (5): 24-9.
- Ford C.E., Hamerton J.L. A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technol. 1956; 31(6): 247-51. https://doi.org/10.3109/10520295609113814.
- Rothfels K.H., Siminovitch L. Air drying technique for flattening chromosomes in mammalian cells grown in vitro. Stain Technol. 1958; 33(2): 73-7. https://doi.org/10.3109/10520295809111827.
- Bowden T.R., Babiukb S.L., Parkynb G.R., Coppsb J.S., Boylea D.B. Capripoxvirus tissue tropism and shedding: A quantitative study inexperimentally infected sheep and goats. Virology. 2008; 371 (2) 380-393. https://doi.org/10.1016/j.virol.2007.10.002.
- AVMA Guidelines for the Euthanasia of Animals (Formerly AVMA Guidelines on Euthanasia): 2013 Edition. Available at: https://www.avma.org/KB/Policies/Pages/Euthanasia-Guidelines.aspx (accessed January 18, 2021).
- Воронцов Н.Н., Раджабли С.И., Волобуев В.Т. Сравнительная кариология летучих мышей семейства Vespertilionidae (Chiro-ptera). В кн.: Млекопитающие (эволюция, кариология, систематика, фаунистика). Новосибирск: Наука; 1969: 16-21.
- Baker R.J. Karyotypic trends in bats. In: Wimsatt W.A., ed. Biology of bats. Academic Press Inc.: New York; 1970, 65-97. https://doi.org/10.1016/b978-0-12-758001-2.50007-1.
- Park S.R., Won P.O. Chromosomes of Korean bats. J. Mammal. Soc. Jpn. 1978; (7): 199-203. https://doi.org/10.11238/jmammsocjapan1952.7.1999.
- Дзуев Р.И., Хашкулова М.А., Боготова И.Х. Особенности хромосомного набора и промеров тела средиземноморского нетопыря (Pipisrellus Kuhli) в условиях лесостепного пояса северного макросклона Центрального Кавказа. Современные проблемы науки и образования. 2016; (3): 390.
- Balkema-Buschmann A., Rissmann M., Kley N., Ulrich R., Eiden M., Groschup M.H. Productive propagation of Rift valley fever phlebovi-rus vaccine strain MP-12 in Rousettus aegyptiacus fruit bats. Viruses. 2018; 10(12): 681. https://doi.org/10.3390/v10120681.
- Fagre A.C., Lee J.S., Kityo R.M., Bergren N.A., Mossel E.C., Nakayiki T., et al. Discovery and characterization of Bukakata orbivirus (Reoviridae: Orbivirus), a novel virus from a Ugandan bat. Viruses. 2019; 11(3): 209. https://doi.org/10.3390/v11030209.
- Emerson Ginny L., Nordhausen R., Garner M.M., Huckabee J.R., Johnson S., Wohrle R.D., et al. Novel Poxvirus in big brown bats, Northwestern United States. Emerg InfectDis. 2013; 19(6): 1002-4. https://doi.org/10.3201/eid1906.121713.
Дополнительные файлы
