Flat-Detector Computed Tomography: Advancing Real-Time Neuronavigation for Stereotactic Brain Tumor Biopsy

Abstract

Stereotactic brain tumor biopsy (STB) currently relies on two primary navigation technologies: framebased and frameless systems. A significant limitation of both
approaches is the inability to visualize the target tumor and biopsy needle in real-time during needle insertion.

References

  1. Patel K.S., Carter B.S., Chen C.C. Role of biopsies in the management of intracranial gliomas. Prog Neurol Surg. 2018; 30: 232-243.-DOI: https://doi.org/10.1159/000464439.
  2. Callovini G.M., Telera S., Sherkat S., et al. How is stereotac tic brain biopsy evolving? A multicentric analysis of a series of 421 cases treated in Rome over the last sixteen years. Clin Neurol Neurosurg. 2018; 174: 101-107.-DOI: https:// doi.org/10.1016/j.clineuro.2018.09.020.
  3. Yu K.K.H., Patel A.R., Moss N.S. The role of stereotac tic biopsy in brain metastases. Neurosurg Clin N Am. 2020; 31(4): 515-526.-DOI: https://doi.org/10.1016/j. nec.2020.06.002.
  4. Dhawan S., He Y., Bartek J., et al. Comparison of frame based versus frameless intracranial stereotactic biopsy: Systematic review and meta-analysis. World Neurosurg. 2019; 127: 607-616.e4.-DOI: https://doi.org/10.1016/j. wneu.2019.04.016.
  5. Маряшев С.А., Поддубский А.А., Пронин И.Н., et al. Использование современных методов МРТ-визуализации для планирования стереотаксических биопсий опухолевых новообразований головного мозга. Медицинская визуали зация. 2022; 26(2): 18-38.-EDN: JHODOR.-DOI: https:// doi.org/10.24835/1607-0763-1046. [Maryashev S.A., Poddubskiy A.A., Pronin I.N., et al. MRI imaging for plan ning stereotactic biopsies of the brain lesions. Medicinskaâ vizualizaciâ = Medical Visualization. 2022; 26(2): 18-38.- EDN: JHODOR.-DOI: https://doi.org/10.24835/1607- 0763-1046 (in Rus)].
  6. Ungar L., Nachum O., Zibly Z., et al. Comparison of frame based versus frameless image-guided intracranial stereotactic brain biopsy: A retrospective analysis of safety and effica cy. World Neurosurg. 2022; 164: e1-e7.-DOI: https://doi. org/10.1016/j.wneu.2021.07.063.
  7. Sugii N., Matsuda M., Tsurubuchi T., Ishikawa E. Hemor rhagic complications after brain tumor biopsy: Risk-reduc tion strategies based on safer biopsy targets and techniques. World Neurosurg. 2023; 176: e254-e264.-DOI: https://doi. org/10.1016/j.wneu.2023.05.046.
  8. Bex A., Mathon B. Advances, technological innovations, and future prospects in stereotactic brain biopsies. Neuro surg Rev. 2022; 46(1): 5.-DOI: https://doi.org/10.1007/ s10143-022-01918-w.
  9. Балахнин П.В., Буровик И.А., Багненко С.С. Технологии визуализации, наведения и слежения в интервенционной онкологии: Современные возможности и перспективы дальнейшего развития. Медицина высоких технологий. 2024; 2(2): 5-21.-EDN: CHVTFU. [Balakhnin P.V., Burovik I.A., Bagnenko S.S. Technologies of visualization, guidance and tracking in interventional oncology: Current capabilities and prospects for further development. Medicina Vysokih Teh nologij. 2024; 2(2): 5-21.-EDN: CHVTFU (in Rus)]. 1258 ВОПРОСЫ ОНКОЛОГИИ. 2025;71(6) doi: 10.37469/0507-3758-2025-71-6-OF-2310
  10. Kalender W.A., Kyriakou Y. Flat-detector computed tomog raphy (FD-CT). Eur Radiol. 2007; 17(11): 2767-79.-DOI: https://doi.org/10.1007/s00330-007-0651-9.
  11. Балахнин П.В., Багненко С.С., Беляев А.М. Плоскоде текторная компьютерная томография в интервенционной радиологии: Предпосылки появления и история созда ния. Медицина высоких технологий. 2024; 2(1): 12-34.- EDN: GKYDDI. [Balakhnin P.V., Bagnenko S.S., Belyaev A.M. Flat-detector computed tomography in interventional radiology: Background and history of creation. Medicina Vysokih Tehnologij. 2024; 2(1): 12-34.-EDN: GKYDDI (in Rus)].
  12. Raz E., Nossek E., Sahlein D.H., et al. Principles, techniques and applications of high resolution cone beam CT angiog raphy in the neuroangio suite. J Neurointerv Surg. 2023; 15(6): 600-607.-DOI: https://doi.org/10.1136/jnis-2022- 018722.
  13. Key B.M., Tutton S.M., Scheidt M.J. Cone-beam CT with en hanced needle guidance and augmented fluoroscopy overlay: Applications in interventional radiology. AJR Am J Roentge nol. 2023; 221(1): 92-101.-DOI: https://doi.org/10.2214/ AJR.22.28712.
  14. Cooke D.L., Levitt M., Kim L.J., et al. Transcranial access using fluoroscopic flat panel detector CT navigation. AJNR Am J Neuroradiol. 2011; 32(4): E69-70.-DOI: https://doi. org/10.3174/ajnr.A2066.
  15. Fiorella D., Peeling L., Denice C.M., et al. Integrated flat detector CT and live fluoroscopic-guided external ventric ular drain placement within the neuroangiography suite. J Neurointerv Surg. 2014; 6(6): 457-60.-DOI: https://doi. org/10.1136/neurintsurg-2013-010856.
  16. Yang Z., Hong B., Jia Z., et al. Treatment of supratentorial spontaneous intracerebral hemorrhage using image-guided minimally invasive surgery: Initial experiences of a flat detec tor CT-based puncture planning and navigation system in the angiographic suite. AJNR Am J Neuroradiol. 2014; 35(11): 2170-5.-DOI: https://doi.org/10.3174/ajnr.A4009.
  17. Enders F., Rothfuss A., Brehmer S., et al. Optimized intra operative imaging for stereotactic planning with a multiaxial robotic C-arm system: Technical note and case series. J Neu rol Surg A Cent Eur Neurosurg. 2022; 83(6): 588-595.-DOI: https://doi.org/10.1055/s-0041-1731754.
  18. Truckenmueller P., Früh A., Kissner J.F., et al. Integration of a lightweight and table-mounted robotic alignment tool with automated patient-to-image registration using robotic cone beam CT for intracranial biopsies and stereotactic electro encephalography. Neurosurg Focus. 2024; 57(6): E2.-DOI: https://doi.org/10.3171/2024.9.FOCUS24525.
  19. Курносов И.А., Балахнин П.В., Субботина Д.Р., et al. Ин траоперационная плоскодетекторная компьютерная томо графия как метод выбора при стереотаксической биопсии опухолей головного мозга. Вопросы онкологии. 2023; 69(3S): 287-288.-EDN: SVIIID. [Kurnosov I.A., Balakhnin P.V., Subbotina D.R., et al. Intraoperative flat-panel computed tomography as the method of choice for stereotactic biopsy of brain tumors. Voprosy Onkologii = Problems in Oncology. 2023; 69(3S): 287-288.-EDN: SVIIID (in Rus)].
  20. Poca M.A., Martínez-Ricarte F-R., Gándara D.F., et al. Target location after deep cerebral biopsies using low-volume air injection in 75 patients. Results and technical note. Acta Neurochir (Wien). 2017; 159(10): 1939-1946.-DOI: https:// doi.org/10.1007/s00701-017-3191-3.
  21. Mabray M.C., Datta S., Lillaney P.V., et al. Accuracy of flat panel detector CT with integrated navigational software with and without MR fusion for single-pass needle place ment. J Neurointerv Surg. 2016; 8(7): 731-5.-DOI: https:// doi.org/10.1136/neurintsurg-2015-011799.
  22. Skyrman S., Lai M., Edström E., et al. Augmented reality navigation for cranial biopsy and external ventricular drain insertion. Neurosurg Focus. 2021; 51(2): E7.-DOI: https:// doi.org/10.3171/2021.5.FOCUS20813.
  23. Riche M., Amelot A., Peyre M., et al. Complications after frame-based stereotactic brain biopsy: a systematic review. Neurosurg Rev. 2021; 44(1): 301-307.-DOI: https://doi. org/10.1007/s10143-019-01234-w.
  24. Riche M., Marijon P., Amelot A., et al. Severity, timeline, and management of complications after stereotactic brain bi opsy. J Neurosurg. 2021; 136(3): 867-876.-DOI: https://doi. org/10.3171/2021.3.JNS21134.
  25. Daly M.J., Siewerdsen J.H., Moseley D.J., et al. Intraopera tive cone-beam CT for guidance of head and neck surgery: Assessment of dose and image quality using a C-arm proto type. Med Phys. 2006; 33(10): 3767-80.-DOI: https://doi. org/10.1118/1.2349687.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Problems in Oncology

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).