Индукторы стресса эндоплазматического ретикулума in vitro подавляют подвижность нормальных и опухолевых клеток человека и приводят к изменению их формы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Стресс эндоплазматического ретикулума (ЭПР) и вызываемый им ответ на несвернутые белки (UPR) играют важную роль в жизнедеятельности и прогрессии множества типов опухолей. В частности, стресс ЭПР может как стимулировать, так и подавлять клеточную подвижность, способность к инвазии и метастазированию. Вклад стресса ЭПР, индуцированного различными механизмами, в изменение параметров клеточной подвижности нормальных и опухолевых клеток изучен недостаточно. В данной работе исследованы отличия характера воздействия индукторов стресса ЭПР бортезомиба, туникамицина и дитиотреитола (ДТТ) на клеточную подвижность, площадь и форму нормальных и опухолевых клеток эпидермального происхождения, HaCaT и A431 соответственно, в присутствии агента и после его удаления из среды культивирования. Показано, что подвижность клеток HaCaT снижается при воздействии бортезомиба, туникамицина и ДТТ и восстанавливается после снятия воздействия. Воздействие бортезомиба и ДТТ также сопровождается обратимым снижением площади и ростом форм-фактора — клетки HaCaT ошариваются и становятся менее отростчатыми. Воздействие бортезомиба на клетки A431 приводит к необратимому снижению подвижности без значительных изменений площади или формы; снижение подвижности после инкубации клеток с туникамицином и ДТТ, наоборот, обратимо. Таким образом, индукторы стресса ЭПР вызывают подавление клеточной подвижности иммортализованных кератиноцитов НаСаТ и клеток эпидермоидной карциномы А431 независимо от механизма индукции. Наблюдаемые при этом изменения площади и формы клеток, а также обратимость этих явлений зависят от типа клеток и от механизма индукции.

Об авторах

И. И. Захаров

Московский государственный университет им. М. В. Ломоносова, биологический факультет; Университет МГУ-ППИ в Шэньчжэне

Email: galina22@mail.ru
Москва, Российская Федерация; Шэньчжэнь, провинция Гуандун, Китайская народная республика

П. А. Веселова

Московский государственный университет им. М. В. Ломоносова, биологический факультет; Научно-исследовательский институт биомедицинской химии им. В. Н. Ореховича

Email: galina22@mail.ru
Москва, Российская Федерация; Москва, Российская Федерация

М. А. Савицкая

Московский государственный университет им. М. В. Ломоносова, биологический факультет

Email: galina22@mail.ru
Москва, Российская Федерация

Е. А. Смирнова

Московский государственный университет им. М. В. Ломоносова, биологический факультет; Университет МГУ-ППИ в Шэньчжэне

Email: galina22@mail.ru
Москва, Российская Федерация; Шэньчжэнь, провинция Гуандун, Китайская народная республика

Г. Е. Онищенко

Московский государственный университет им. М. В. Ломоносова, биологический факультет

Email: galina22@mail.ru
Москва, Российская Федерация

Список литературы

  1. Almanza A., Carlesso A., Chintha C., et al. Endoplasmic reticulum stress signalling — from basic mechanisms to clinical applications // The FEBS journal. 2019. V. 286. № 2. P. 241–278.
  2. Banerjee D. K., Seijo Lebrón A., Baksi K. Glycotherapy: A new paradigm in breast cancer research // Biomolecules. 2022. V. 12. № 4. P. 487.
  3. Bao M., Feng Q., Zou L., et al. Endoplasmic reticulum stress promotes endometrial fibrosis through the TGFβ/SMAD pathway // Reproduction (Cambridge, England). 2023. V. 165. № 2. P. 171–182.
  4. Brabletz S., Schuhwerk H., Brabletz T., et al. Dynamic EMT: a multi-tool for tumor progression // The EMBO journal. 2021. V. 40. № 18. P. e108647.
  5. Chu H.-S., Peterson C., Chamling X., et al. Integrated stress response regulation of corneal epithelial cell motility and cytokine production // Investigative Ophthalmology & Visual Science. 2022. V. 63. № 8. P. 1.
  6. Chuang H.-H., Zhen Y.Y., Tsai Y.C., et al. FAK in cancer: from mechanisms to therapeutic strategies // International Journal of Molecular Sciences. 2022. V. 23. № 3. P. 1726.
  7. Cleland W.W. Dithiothreitol, a new protective reagent for SH groups // Biochemistry. 1964. V. 3. № 4. P. 480–482.
  8. Cole D.W., Svider P.F., Shenouda K.G., et al. Targeting the unfolded protein response in head and neck and oral cavity cancers // Experimental Cell Research. 2019. V. 382. № 1. P. 111386.
  9. Deyrieux A.F., Wilson V.G. In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line // Cytotechnology. 2007. V. 54. № 2. P. 77.
  10. Fribley A., Zeng Q., Wang C.-Y. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells // Molecular and Cellular Biology. 2004. V. 24. № 22. P. 9695–9704.
  11. Hetz C., Zhang K., Kaufman R. J. Mechanisms, regulation and functions of the unfolded protein response // Nature Reviews Molecular Cell Biology. 2020. V. 21. № 8. P. 421–438.
  12. Hou H., Ge C., Sun H., et al. Tunicamycin inhibits cell proliferation and migration in hepatocellular carcinoma through suppression of CD44s and the ERK1/2 pathway // Cancer Science. 2018. V. 109. № 4. P. 1088–1100.
  13. Jiang H., Zou J., Zhang H., et al. Unfolded protein response inducers tunicamycin and dithiothreitol promote myeloma cell differentiation mediated by XBP-1 // Clinical and Experimental Medicine. 2015. V. 15. № 1. P. 85–96.
  14. Ko B.-S., Chang T.C., Chen C.H., et al. Bortezomib suppresses focal adhesion kinase expression via interrupting nuclear factor-kappa B // Life Sciences. 2010. V. 86. № 5–6. P. 199–206.
  15. Li J., Jia L., Ma Z.-H., et al. Axl glycosylation mediates tumor cell proliferation, invasion and lymphatic metastasis in murine hepatocellular carcinoma // World Journal of Gastroenterology. 2012. V. 18. № 38. P. 5369–5376. https://doi.org/10.3748/wjg.v18.i38.536916.
  16. Liu D., Zhu H., Gong L., et al. Histone deacetylases promote ER stress induced epithelial mesenchymal transition in human lung epithelial cells // Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology. 2018. V. 46. № 5. P. 1821–1834.
  17. Lorch J.H., Thomas T.O., Schmoll H.-J. Bortezomib inhibits cell-cell adhesion and cell migration and enhances epidermal growth factor receptor inhibitor-induced cell death in squamous cell cancer // Cancer Research. 2007. V. 67. № 2. P. 727–734.
  18. Madden E., Logue S.E., Healy S.J., et al. The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance // Biology of the Cell. 2019. V. 111. № 1. P. 1–17.
  19. Mahdi A.A., Rizvi S.H.M., Parveen A. Role of endoplasmic reticulum stress and unfolded protein responses in health and diseases // Indian Journal of Clinical Biochemistry. 2016. V. 31. № 2. P. 127–137.
  20. Miettinen T. P., Caldez M. J., Kaldis P., et al. Cell size control — a mechanism for maintaining fitness and function // BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 2017. V. 39. № 9. Art. no. 1700058.
  21. Mo X.-T., Zhou W. C., Cui W. H., et al. Inositol-requiring protein 1-X-box-binding protein 1 pathway promotes epithelial-mesenchymal transition via mediating snail expression in pulmonary fibrosis // The International Journal of Biochemistry & Cell Biology. 2015. V. 65. P. 230–238.
  22. Moon K., Lee H.-G., Baek W.-K., et al. Bortezomib inhibits proliferation, migration, and TGF-β1-induced epithelial–mesenchymal transition of RPE cells // Molecular Vision. 2017. V. 23. P. 1029–1038. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757857.
  23. Moon S.Y., Kim H.S., Nho K.W. Endoplasmic reticulum stress induces epithelial-mesenchymal transition through autophagy via activation of c-Src kinase // Nephron. Experimental Nephrology. 2014. V. 126. № 3. P. 127–140.
  24. Muramatsu H., Muramatsu T. Effects of succinyl concanavalin A and tunicamycin on F9 embryonal carcinoma cells: inhibition of cell spreading: (succinyl concanavalin A/tunicamycin/embryonal carcinoma cells/glycoproteins/cell spreading) // Development, Growth & Differentiation. 1984. V. 26. № 3. P. 303–310.
  25. Nagy G., Kiraly G., Turani M., et al. Cell trivision of hyperploid cells // DNA and cell biology. 2013. V. 32. № 12. P. 676–684.
  26. Nami B., Donmez H., Kocak N. Tunicamycin-induced endoplasmic reticulum stress reduces in vitro subpopulation and invasion of CD44+/CD24-phenotype breast cancer stem cells // Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie. 2016. V. 68. № 7. P. 419–426.
  27. Obeng E. A., Carlson L. M., Gutman D. M., et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells // Blood. 2006. V. 107. № 12. P. 4907–4916.
  28. Ouyang S., Ji D., He S., et al. Endoplasmic reticulum stress as a novel target to inhibit transdifferentiation of human retinal pigment epithelial cells // Frontiers in Bioscience (Landmark Edition). 2022. V. 27. № 2. P. 38.
  29. Øvrebø J. I., Edgar B. A. Polyploidy in tissue homeostasis and regeneration // Development (Cambridge, England). 2018. V. 145. № 14. P. dev156034.
  30. Pfisterer L., Meyer R., Feldner A. Bortezomib protects from varicose-like venous remodeling // The FASEB Journal. 2014. V. 28. № 8. P. 3518–3527.
  31. Rapoport T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes // Nature. 2007. V. 450. № 7170. P. 663–669.
  32. Ren B., Wang Y., Wang H. Comparative proteomics reveals the neurotoxicity mechanism of ER stressors tunicamycin and dithiothreitol // NeuroToxicology. 2018. V. 68. P. 25–37.
  33. Schlaepfer D. D., Mitra S. K., Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase // Biochimica Et Biophysica Acta. 2004. V. 1692. № 2–3. P. 77–102.
  34. Shelton W. T., Thomas S. M., Alexander H. R., et al. Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion // Scientific Reports. 2021. V. 11. № 1. P. 13295.
  35. Shi C., Zhang G.-B., Yin S.-W. Effect of bortezomib on migration and invasion in cervical carcinoma HeLa cell // Asian Pacific Journal of Tropical Medicine. 2015. V. 8. № 6. P. 485–488.
  36. Shimizu N., Kondo I., Gamou S., et al. Genetic analysis of hyperproduction of epidermal growth factor receptors in human epidermoid carcinoma A431 cells // Somatic Cell and Molecular Genetics. 1984. V. 10. № 1. P. 45–53.
  37. Shin H.-S., Ryu E.S., Oh E.S., et al. Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells // Laboratory Investigation; a Journal of Technical Methods and Pathology. 2015. V. 95. № 10. P. 1157–1173.
  38. Shinjo S., Mizotani Y., Tashiro E., et al. Comparative analysis of the expression patterns of UPR-target genes caused by UPR-inducing compounds // Bioscience, Biotechnology, and Biochemistry. 2013. V. 77. № 4. P. 729–735.
  39. Stirling D.R., Swain-Bowden M.J., Lucas A.M., et al. CellProfiler 4: improvements in speed, utility and usability // BMC Bioinformatics. 2021. V. 22. № 1. P. 433.
  40. Tan C. R. C., Abdul-Majeed S., Cael B., et al. Clinical pharmacokinetics and pharmacodynamics of bortezomib // Clinical Pharmacokinetics. 2019. V. 58. № 2. P. 157–168.
  41. Tanjore H., Cheng D. S., Degryse A. L., et al. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress // The Journal of Biological Chemistry. 2011. V. 286. № 35. P. 30972–30980.
  42. Vildanova M., Vishnyakova P., Saidova A., et al. Gibberellic acid initiates ER stress and activation of differentiation in cultured human immortalized keratinocytes HaCaT and epidermoid carcinoma cells A431 // Pharmaceutics. 2021. V. 13. № 11. P. 1813.
  43. Wang D., Qiu Y., Fan J., et al. Upregulation of C/EBP homologous protein induced by ER stress mediates epithelial to myofibroblast transformation in ADTKD-UMOD // International Journal of Medical Sciences. 2022. V. 19. № 2.
  44. Wilson V. G. Growth and differentiation of HaCaT keratinocytes / под ред. K. Turksen, New York, NY: Springer, 2014. P. 33–41.
  45. Yoo Y. S., Han H. G., Jeon Y. J. Unfolded protein response of the endoplasmic reticulum in tumor progression and immunogenicity // Oxidative Medicine and Cellular Longevity. 2017. V. 2017. P. 1–18.
  46. Zhong Q., Zhou B., Ann D. K., et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein // American Journal of Respiratory Cell and Molecular Biology. 2011. V. 45. № 3. P. 498–509.
  47. Zhou S., Yang J., Wang M., et al. Endoplasmic reticulum stress regulates epithelial-mesenchymal transition in human lens epithelial cells // Molecular Medicine Reports. 2020. V. 21. № 1. P. 173–180.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).