Origin and evolution of ANTP-class homeobox genes
- Authors: Kulakova M.A.1
-
Affiliations:
- St. Petersburg State University
- Issue: Vol 56, No 3 (2025)
- Pages: 95-105
- Section: REVIEWS
- URL: https://ogarev-online.ru/0475-1450/article/view/307086
- DOI: https://doi.org/10.31857/S0475145025030013
- EDN: https://elibrary.ru/kxxzdn
- ID: 307086
Cite item
Abstract
Genes of the ANTP classare known as evolutionary conserved and hierarchically high-level regulators ofdevelopment. They are the most studied and the most numeroushomeobox genes in animals. These genes encode homeodomain transcription factorsand possess a set of unique features, such as clustering,colinearity, evolutionary conservation, and consistent involvement in various differentiation processesthroughout the ontogeny of multicellular animals. The first ANTP genes (fromthe NK subclass) appear in ctenophores and sponges, which iswhy the evolution of Metazoa from a common unicellular ancestoris often associated with the emergence of the ANTP class(Larroux et al., 2007; Moroz et al., 2014). Phylogenetic analysisof homeobox genes, conducted across a broad range of basalMetazoa taxa, has shown that ANTP genes from the Hoxand ParaHox subclasses arose in the last common ancestor ofCnidaria and Bilateria. These new findings raise further questions. Howdoes the evolution of these clusters correlate with the evolutionof animals? What functions were acquired by the new genes,and which were inherited from ancestral NK genes? What changesin their regulation could have influenced the evolution of bodyplans in Metazoa? Is it even possible to answer thesequestions by studying modern multicellular organisms? This review aims to addressthese and other questions regarding the evolution of ANTP geneclusters. Special attention is given to the concept of the“megacluster”—a hypothetical synteny that united all ANTP subclassesat the dawn of Metazoa evolution. The decreasing cost of sequencingtechnologies offers some hope for answers, as it expands therange of model species available for study. The broader thisrange, the easier it becomes to identify universal and lineage-specificpatterns of molecular and morphological evolution.
About the authors
M. A. Kulakova
St. Petersburg State University
Email: m.kulakowa@spbu.ru
Oranienbaumskoye shosse 2, Old Peterhof, St. Petersburg, 199034 Russia
References
- Albertin C.B.,Medina-Ruiz S.,Mitros T. et al. Genomeandtranscriptome mechanisms driving cephalopod evolution // Nat. Commun. 2022. V.13(1). Art. no. 2427. https://doi.org/10.1038/s41467-022-29748-w
- Azpiazu N., Frasch M. Tinmanandbagpipe: Two homeo box genes that determine cell fatesin the dorsal mesoderm ofDrosophila// Genes Dev. 1993.V. 7(7B). P. 1325–1340. https://doi.org/10.1101/gad.7.7b.1325
- Awgulewitsch A. Hox in hairgrowth and development // Naturwissenschaften. 2003 V. 90(5). P. 193–211. https://doi.org/10.1007/s00114-003-0417-4
- Battulin N., Fishman V.S., Mazur A.M. et al. Comparison ofthe three-dimensional organization of sperm and fibroblast genomes using theHi-C approach // Genome biology. 2015. V. 16. P. 1–15.
- Brooke N.M., Garcia-Fernàndez J., Holland P.W. The ParaHox gene cluster is an evolutionary sister ofthe Hox gene cluster // Nature. 1998. V. 392(6679).
- P. 920–922. https://doi.org/10.1038/31933
- Bürglin T.R.,Affolter M. Homeodomain proteins: An update// Chromosoma. 2016. V. 125(3). P. 497–521. https://doi.org/10.1007/s00412-015-0543-8
- Butts T., Holland P.W., Ferrier D.E. The urbilaterian Super-Hox cluster // Trends Genet.2008. V. 24(6). P. 259–262. https://doi.org/10.1016/j.tig.2007.09.006
- Cannon J.T., Vellutini B.C.,Smith J. 3rd, Ronquist F., Jondelius U., Hejnol A. Xenacoelomorpha is the sister group to Nephrozoa // Nature. 2016.V. 530(7588). P. 89–93. https://doi.org/10.1038/nature16520
- Chan C., Jayasekera S., Kao B.,Páramo M., von Grotthuss M., Ranz J.M. Remodelling of ahomeobox gene cluster by multiple independent gene reunions inDrosophila// Nat. Commun. 2015. V. 6. Art. no. 6509. https://doi.org/10.1038/ncomms7509
- Chiori R., Jager M., Denker E., Wincker P., Da SilvaC., Le Guyader H., Manuel M.,Quéinnec E. Are Hox genes ancestrallyinvolved in axial patterning? Evidence from the hydrozoanClytia hemisphaerica(Cnidaria). PLoS One. 2009. V. 4(1). Art. no. e4231. https://doi.org/10.1371/journal.pone.0004231
- Ferrier D.E.K. Evolution of homeobox gene clusters in animals: the giga-clusterand primary vs. secondary clustering // Frontiers in Ecology andEvolution. 2016. V. 4. P. 36.
- Fröbius A.C., Funch P.Rotiferan Hox genes give new insights into the evolution ofmetazoan bodyplans // Nat. Commun. 2017. V. 8(1). P. 9. https://doi.org/10.1038/s41467-017-00020-w
- Garcia-Fernàndez J. The genesis and evolution of homeobox gene clusters// Nat. Rev. Genet. 2005. V. 6(12). P. 881–892. https://doi.org/10.1038/nrg1723
- Guiglielmoni N., Rivera-Vicéns R., Koszul R., Flot J.F. A deepdive into genome assemblies of non-vertebrate animals // Peer CommunityJournal. 2022. V. 2. Art. no. e29
- He S., Del VisoF., Chen C.Y., Ikmi A., Kroesen A.E., Gibson M.C. Anaxial Hox code controls tissue segmentation and body patterning inNematostella vectensis// Science.2018. V. 361(6409). P. 1377–1380. https://doi.org/10.1126/science.aar8384
- Hecox-Lea B.J., Mark Welch D.B. Evolutionary diversity andnovelty of DNA repair genes in asexualBdelloid rotifers//BMC Evol. Biol. 2018. V. 18(1). P. 177 https://doi.org/10.1186/s12862-018-1288-9
- Holland P.W.,Booth H.A., Bruford E.A. Classification and nomenclature of all humanhomeobox genes // BMC Biol. 2007. V. 5. P. 47. https://doi.org/10.1186/1741-7007-5-47
- PMID: 17963489;PMCID: PMC2211742.
- Holland P.W. Evolution of homeoboxgenes // Wiley Interdiscip Rev. Dev. Biol. 2013. V. 2(1).P. 31–45 https://doi.org/10.1002/wdev.78
- Hombría J.C., García-Ferrés M., Sánchez-Higueras C. Anterior Hoxgenes and the process of cephalization // Front. Cell Dev.Biol. 2021. V. 9. P. 718175. https://doi.org/10.3389/fcell.2021.718175
- Hui J.H., McDougallC., Monteiro A.S., Holland P.W., Arendt D., Balavoine G., Ferrier D.E. Extensive chordate and annelid macrosynteny reveals ancestral homeobox geneorganization // Mol. Biol. Evol. 2012. V. 29(1). P. 157–165. https://doi.org/10.1093/molbev/msr175
- Ikuta T., Yoshida N., Satoh N., Saiga H. Ciona intestinalisHox gene cluster: Its dispersed structure and residual colinear expressionin development // Proc. Natl. Acad. Sc.i USA. 2004. V.101(42). P. 15118–15123. https://doi.org/10.1073/pnas.0401389101
- Jagla K.,Bellard M., Frasch M. A cluster ofDrosophilahomeoboxgenes involved in mesoderm differentiation programs // Bioessays. 2001. V.23(2). P. 125–133. https://doi.org/10.1002/1521-1878(200102)23:2 <125::AID-BIES1019>3.0.CO;2-C
- Kaul-Strehlow S., Urata M.,Praher D., WanningerA. Neuronal patterning of the tubular collar cord is highlyconserved among enteropneusts but dissimilar to the chordate neural tube// Sci. Rep. 2017. V. 7(1). P. 7003. https://doi.org/10.1038/s41598-017-07052-8
- KhalturinK., Shinzato C., Khalturina M. et al. Medusozoan genomes informthe evolution of the jellyfish body plan // Nat. Ecol.Evol. 2019. V. 3(5). V. 811–822. https://doi.org/10.1038/s41559-019-0853-y
- Kim Y., Nirenberg M.DrosophilaNK-homeobox genes // Proc. Natl. Acad. Sci.U SA. 1989. V. 86(20). P. 7716–7720. https://doi.org/10.1073/pnas.86.20.7716
- Kulakova M.A., Cook C.E., Andreeva T.F.ParaHox gene expression in larval and postlarvaldevelopment of the polychaeteNereis virens(Annelida, Lophotrochozoa) // BMCDev. Biol. 2008. V. 8. P. 61.
- Maconochie M., Nonchev S.,Morrison A., Krumlauf R.Paralogous Hox genes: Function and regulation// Annu. Rev. Genet. 1996. V. 30. P. 529–556. https://doi.org/10.1146/annurev.genet.30.1.529
- Matus D.Q., Halanych K.M., Martindale M.Q.The Hox genecomplement of a pelagic chaetognath,Flaccisagitta enflata// Integr. Comp.Biol. 2007. V. 47(6). P. 854–864. https://doi.org/10.1093/icb/icm077
- Mio C., BaldanF., Damante G. NK2 homeobox gene cluster: Functions and rolesin human diseases // Genes Dis. 2022. V. 10(5). P. 2038–2048. https://doi.org/10.1016/j.gendis.2022.10.001
- Moroz L.L., Kocot K.M., Citarella M.R. etal. The ctenophore genome and the evolutionary origins of neuralsystems // Nature. 2014. V. 510(7503). V. 109–114. https://doi.org/10.1038/nature13400
- Nong W., Cao J., Li Y., Qu Z. et al.Jellyfish genomes reveal distinct homeobox gene clusters and conservation ofsmall RNA processing // Nat. Commun. 2020. V. 11(1).P. 3051. https://doi.org/10.1038/s41467-020-16801-9
- PapsJ., Rossi M.E., Bowles A.M.C., Álvarez-PresasM. Assembling animals: Trees, genomes, cells, and contrast to plants// Front. Ecol. Evol. 2023. V. 11. Art. no. 1185566. https://doi.org/10.3389/fevo.2023.1185566
- Powers T.P., Amemiya C.T. Evidence for a Hox14 paraloggroup in vertebrates // Curr. Biol. 2004. V. 14(5). P. R183–184. https://doi.org/10.1016/j.cub.2004.02.015
- Ryan J.F.,Mazza M.E., Pang K., Matus D.Q., Baxevanis A.D., Martindale M.Q., Finnerty J.R. Pre-bilaterian origins of the Hoxcluster and the Hox code: Evidence from the sea anemone,Nematostella vectensis //PLoS One. 2007. V. 2(1). Art. no.e153. https://doi.org/10.1371/journal.pone.0000153
- Ryan J.F.,Pang K. Mullikin J.C., Martindale M.Q., Baxevanis A.D.The homeodomain complement of the ctenophoreMnemiopsis leidyisuggeststhat Ctenophora and Porifera diverged prior to the ParaHoxozoa //Evodevo. 2010. V. 1(1). Art. no. 9. https://doi.org/10.1186/2041-9139-1-9
- Saudemont A., DrayN., Hudry B., Le Gouar M., Vervoort M., Balavoine G.Complementary striped expression patterns of NK homeobox genes during segment formation in the annelidPlatynereis // Dev. Biol. 2008. V. 317(2).P. 430–443. https://doi.org/10.1016/j.ydbio.2008.02.013
- Schnitzler C.E., Chang E.S., Waletich J. et al. The genome ofthe colonial hydroidHydractiniareveals that their stem cells usea toolkit of evolutionarily shared genes with all animals //Genome Res. 2024. V. 34(3). P. 498–513. https://doi.org/10.1101/gr.278382.123
- Seo H.C.,Edvardsen R.B., Maeland A.D. et al. Hox cluster disintegration withpersistent anteroposterior order of expression inOikopleura dioica// Nature.2004. V. 431(7004). P. 67–71. https://doi.org/10.1038/nature02709
- Sharkey M., Graba Y.,Scott M.P. Hox genes in evolution: Protein surfaces and paraloggroups // Trends Genet. 1997. V. 13(4). P. 145–151. https://doi.org/10.1016/s0168-9525(97)01096-2
- Smith J.J., Kratsios P. Hox gene functions in theC. elegansnervous system: From early patterning to maintenance of neuronal identity // Semin. Cell Dev. Biol.2024. V. 152–153. P. 58–69. https://doi.org/10.1016/j.semcdb.2022.11.012
- Suga H.,Chen Z., de MendozaA. et al. TheCapsasporagenomereveals a complex unicellular prehistory of animals // Nat. Commun.2013. V. 4. Art. no. 2325 https://doi.org/10.1038/ncomms3325
- Technau U., GenikhovichG. Evolution: Directives from sea anemone Hox genes // Curr.Biol. 2018. V. 28(22). P. R1303–R1305. https://doi.org/10.1016/j.cub.2018.09.040
- Tomikawa J. Potential rolesof inter-chromosomal interactions in cell fate determination // Front. CellDev. Biol. 2024. V. 12. Art. no.1397807. https://doi.org/10.3389/fcell.2024.1397807
- ZimmermannB., Montenegro J.D., Robb S.M.C. et al. Topological structures andsyntenic conservation in sea anemone genomes // Nat. Commun. 2023.V. 14(1). Art. no. 8270. https://doi.org/10.1038/s41467-023-44080-7
Supplementary files


