ВЛИЯНИЕ СОСТАВА И УСЛОВИЙ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРОВ KFeCo/γ-Al2O3 НА ИХ АКТИВНОСТЬ В РЕАКЦИИ СИНТЕЗА УГЛЕВОДОРОДОВ ИЗ СО2

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В реакции синтеза углеводородов из СО2 исследованы серии железосодержащих катализаторов, нанесенных на γ-Al2O3 и модифицированных калием и кобальтом. Образцы разных серий отличались способом нанесения и соотношением компонентов. При приготовлении катализаторов, модифицированных кобальтом и калием, методом совместной пропитки по избытку пропиточного раствора наблюдается неравномерное распределение катионов кобальта и железа на поверхности катализатора. Нанесение железа и модификаторов методом последовательной пропитки по избытку пропиточного раствора с промежуточной термической обработкой на воздухе позволяет достичь равномерного распределения катионов кобальта и железа. Это приводит к значительному увеличению селективности образования углеводородов С5+ и снижению селективности по метану. Для катализаторов, приготовленных методом последовательной пропитки, было установлено оптимальное соотношение кобальта к железу, равное nCo/nFe ≈ 0.35–0.45, а также содержание активного компонента, железа, составляющее ωFe ≈ 4%.

Об авторах

Е. В Докучиц

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Email: oschtan@catalysis.ru
Новосибирск, Россия

Г. И Мальцев

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Новосибирск, Россия

А. В Ищенко

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Новосибирск, Россия

Т. П Минюкова

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Новосибирск, Россия

Список литературы

  1. Chen Y., Lubabu M.M. // Renew. Energy. 2026. V. 256. Art. 124052. https://doi.org/10.1016/j.renene.2025.124052
  2. Hamrouni D., Hasni R., Ouerghi I. // Environ. Sustain. Indic. 2025. V. 27. Art. 100817. https://doi.org/10.1016/j.indic.2025.100817
  3. Gür T.M. // Prog. Energy Combust. Sci. 2022. V. 89. Art. 100956. https://doi.org/10.1016/j.pecs.2021.100965
  4. Xie Zh., Tan Zh., Wang K., Shao B., Zhu Y., Li J., Mao Y., Hu J. // Energy Convers. Manag. 2025. V. 323. Art. 119269. https://doi.org/10.1016/j.enconman.2024.119269
  5. Xu D., Cao Y., Fan H., Hou G., Li Y., Huang S., He R., Zhang H., Zhang R., Ding M. // Sci. Bull. 2025. https://doi.org/10.1016/j.scib.2025.07.032
  6. Макарян И.А., Седов И.В., Савченко В.И. // Катализ в промышленности. 2023. Т. 23. № 4. С. 6. https://doi.org/10.18412/1816-0387-2023-4-6-32
  7. Evdokimenko N.D., Kustova A.L., Kim K.O., Igonina M.S., Kustov L.M. // Mendeleev Commun. 2018. V. 28. № 1–2. P. 147. https://doi.org/10.1016/j.mencom.2018.03.012
  8. Pokusaеva Ya.A., Koklin A.E., Lunin V.V., Bogdan V.I. // Mend. Comm. 2019. V. 29. № 4. P. 382. https://doi.org/10.1016/j.mencom.2019.07.007
  9. Dement’ev K.I., Dementeva O.S., Ivantsov M.I., Kulikova M.V., Magomedova M.V., Maximov A.L., Lyadov A.S., Starozhitskaya A.V., Chudakova M.V. // Pet. Chem. 2022. V. 62. № 5. P. 445. https://doi.org/10.1134/S0965544122050012
  10. Guo L., Yang H., Qiu J., Zhang T., Xu Y., Duan Z., Yang Y., Dai X., Liu L., Zhang Ch. // J. Environ. Chem. Eng. 2025. V. 13. № 5. Art. 117796. https://doi.org/10.1016/j.jece.2025.117796
  11. Riedel T., Schaub G., Jun K.-W., Lee K.-W. // Ind. Eng. Chem. Res. 2001. V. 40. P. 1355. https://doi.org/10.1021/ie000084k
  12. Li F., Su W., Fang Y., Yao K., Sun Y., Dai Ch., Zhao B. // Chem. Eng. J. 2025. V. 521. Art. 166365. https://doi.org/10.1016/j.cej.2025.166365
  13. Spennati E., Riani P., Garbarino G. // Catal. Today. 2023. V. 418. Art. 114131. https://doi.org/10.1016/j.cattod.2023.114131
  14. Кинпис М.А., Самохин П.В., Волнина Э.А., Магомедова М.В., Туркова Т.В. // Кинетика и катализ 2022. Т. 63. № 3. С. 351. https://doi.org/10.31857/S045388112203008X
  15. Кинпис М.А., Самохин П.В., Галкин Р.С., Волнина Э.А., Жиляева Н.А. // Кинетика и катализ. 2024. Т. 65. № 1. С. 67. https://doi.org/10.31857/S0453881124010065
  16. Istadi I., Fani F., Riyanto T., Anggoro D.D., Jongsomjiti B., Putranto A.B. // J. Ind. Eng. Chem. 2025. V. 149. P. 1. https://doi.org/10.1016/j.jiec.2025.01.046
  17. Lox E.S., Froment G.F. // Ind. Eng. Chem. Res. 1993. V. 32. № 1. P. 71. https://doi.org/10.1021/ie00013a011
  18. Puga A.V. // Catal. Sci. Technol. 2018. V. 8, P. 5681. https://doi.org/10.1039/c8cy01216d
  19. Ma L., Wang B., Fan M., Ling L., Zhang R. // Chem. Eng. J. 2023. V. 466. Art. 143278. https://doi.org/10.1016/j.cej.2023.143278
  20. Dorner R.W., Hardy D.R., Williams F.W., Willauer H.D. // Energy Environ. Sci. 2010. V. 3. P. 884. https://doi.org/10.1039/C001514H
  21. Malina O., Jakubec P., Kašlík J., Tuček J., Zbořil R. // Nanoscale. 2017. V. 9. P. 10440. https://doi.org/10.1039/C7NR02383A
  22. Kraleva E., Lund H., Weiß J., Bartling S., Atia H., Cherkezova-Zheleva Z., Paneva D., Wohlrab S., Armbruster U. // Appl. Catal. Gen. 2024. V. 683. Art. 119857. https://doi.org/10.1016/j.apcata.2024.119857
  23. Zhang Y, Fu D., Liu X., Zhang Zh., Zhang Ch., Shi B., Xu J., Han Y.-F. // ChemCatChem. 2017. V. 10. P. 1272. https://doi.org/10.1002/cctc.201701779
  24. Sathawong R., Koizumi N., Song Ch., Prasassarakich P. // J. CO2 Util. 2013. V. 3–4. P. 102. https://doi.org/10.1016/j.jcou.2013.10.002
  25. Yao B., Xiao T., Makgae O.A., Jie X., Gonzalez-Cortes S., Guan Sh., Kirkland A.I., Dilworth J.R., Al-Megren H.A., Alshihri S.M., Dobson P.J., Owen G.P., Thomas J.M., Edwards P.P. // Nature Commun. 2020. V. 11. P. 6395. https://doi.org/10.1038/s41467-020-20214-z
  26. Zhang J., Yuan F., Zhang A., Zhang G., Ren L., Song Ch., Guo X. // Fuel 2024. V. 357. № B. Art. 129904. https://doi.org/10.1016/j.fuel.2023.129904
  27. Martinelli M., Visconti C.G., Lietti L., Forzatti P., Bassano C., Deiana P. // Catal. Today. 2014. V. 228. P. 77. https://doi.org/10.1016/j.cattod.2013.11.018
  28. Bradley M.J., Ananth R., Willauer H.D., Baldwin J.W., Hardy D.R., Williams F.W. // Molecules. 2017. V. 22. № 9. P. 1579. https://doi.org/10.3390/molecules22091579
  29. Xi X., Zeng F., Zhang H., Wu X., Ren J., Bisswanger T., Stampfer Ch., Hofmann J.P., Palkovits R., Heeres H.J. // ACS Sustain. Chem. Eng. 2021. V. 9. № 18. P. 6235. https://doi.org/10.1021/acssuschemeng.0c08760
  30. Dokuchits E.V., Tikhov S.F., Valeev K.R., Kardash T.Yu., Salanov A.N., Lisitsyn A.S., Yakovlev I.V., Lapina O.B., Minyukova T.P. // Kinet. Catal. 2025. V. 66. № 1. P. 76. https://doi.org/10.1134/S0023158424601864
  31. Choi P.H., Jun K.-W., Lee S.-J., Choi M.-J., Lee K.-W. // Catal. Lett. 1996. V. 40. P. 115. https://doi.org/10.1007/BF00807467
  32. Sathawong R., Koizumi N., Song C., Prasassarakich P. // J. CO2 Util. 2013. V. 3–4. P. 102. https://doi.org/10.1016/j.jcou.2013.10.002
  33. Saeidi S., Najari S., Fazlollahi F., Nikoo M.K., Sefidkon F., Klemeš J.J., Baxter L.L. // Renew. Sustain. Energy Rev. 2017. V. 80. P. 1292. https://doi.org/10.1016/j.rser.2017.05.204

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).