Kinetic regularities of CNF synthesis on Ni–Cu–Al2O3 catalyst in the reaction of CH4 decomposition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is aimed at studying the kinetic patterns of carbon nanofiber (CNF) growth on the Ni–Cu–Al2O3 catalyst in the methane decomposition reaction. The catalyst was prepared by mechanochemical activation in an Activator-2S planetary mill. The dependence of the catalytic activity of the Ni–Cu alloy on the hydrogen concentration (0–28 vol. %) in the decomposed mixture (CH4/H2) was studied in a flow gravimetric setup with a McBain balance. It is shown that in the absence of hydrogen, the CNF accumulation rate rapidly decreases. The introduction of 10 vol. % hydrogen in the reaction mixture allows stabilizing the CNF formation rate over 90 min of the reaction (600°C, CNF yield = 41.4 g/gcat). The observed reaction order with respect to hydrogen was estimated to be –0.18 at low H2 concentrations (0–16 vol. %) and –1.5 at its higher content in the reaction mixture (16–28 vol. %). The effect of pyrolysis temperature on the nature of the CNF accumulation kinetics was studied in the range of 550–700°C. The values of the observed activation energy (Ea) were determined at different time intervals of the process. It was found that Ea does not depend on the presence of hydrogen in the reaction mixture. The morphology and structure of the CNF samples obtained at different hydrogen contents in the reaction mixture were studied by transmission electron microscopy. It was shown that with increasing hydrogen concentration, there is a tendency to form larger CNF with a defective structure. The textural characteristics of the carbon material were measured by argon adsorption at 87 K. The specific surface area of the CNF varies from 90 to 150 m²/g depending on the reaction conditions. The obtained results can be used in the development of a mathematical model of a catalytic pyrolysis reactor of methane.

About the authors

S. D Afonnikova

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

D. M Shivtsov

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

G. B Veselov

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

A. B Ayupov

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

Y. I Bauman

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

I. V Mishakov

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

A. A Vedyagin

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

E. V Shelepova

Boreskov Institute of Catalysis SB RAS

Email: shev@catalysis.ru
Novosibirsk, Russia

References

  1. Пинаева Л.Г., Носков А.С., Пармон В.Н. // Катализ в промышленности. 2017. № 3. C. 184.
  2. Степанов А.А., Восмериков А.В. // НефтеГазоХимия. 2024. № 3–4. C. 56.
  3. Гаврилов Ю.В., Гришин Д.А., Джиан Х., Дигуров Н.Г., Насибулин А.Г., Кауппинен Е.И. // Журнал физической химии. 2007. T. 81. № 9. C. 1686.
  4. McConnachie M., Konarova M., Smart S. // Int. J. Hydrogen Energy. 2023. V. 48. № 66. P. 25660.
  5. Riley J., Atallah C., Siriwardane R., Stevens R. // Int. J. Hydrogen Energy. 2021. V. 46. № 39. P. 20338.
  6. Yang X., Li L., Nishiyama Y., Reid M.S., Berglund L.A. // Carbohydr. Polym. 2023. V. 312. Art. 120788.
  7. Коваленко Г.А., Перминова Л.В., Гойдин В.В., Заворин А.В., Мосеенков С.И., Кузнецов В.Л. // Кинетика и катализ. 2023. T. 64. № 2. C. 227.
  8. Ruiz-Cornejo J.C., Sebastian D., Lazaro M.J. // Rev. Chem. Eng. 2020. V. 36. № 4. P. 493.
  9. Веселов Г.Б., Шивцов Д.М., Афонникова С.Д., Мишаков И.В., Ведягин А.А. // Кинетика и катализ. 2023. T. 64. № 6. C. 857.
  10. Farias C.B.B., Barreiros R.C.S., da Silva M.F., Casazza A.A., Converti A., Sarubbo L.A. // Energies. 2022. V. 15. № 1. P. 311.
  11. Wang I.W., Kutteri D.A., Gao B., Tian H., Hu J. // Energy Fuel. 2018. V. 33. № 1. P. 197.
  12. Vlaskin M.S., Grigorenko A.V., Gromov A.A., Kumar V., Dudoladov A.O., Slavkina O.V., Darishchev V.I. // Res. Eng. 2022. V. 15. Art. 100598.
  13. Чесноков В.В., Буянов Р.А. // Успехи химии. 2000. Т. 69. № 7. С. 675.
  14. Chesnokov V.V., Chichkan A.S. // Int. J. Hydrogen Energy. 2009. V. 34. № 7. P. 2979.
  15. Awad A., Masiran N., Abdus Salam M., Vo D.-V.N., Abdullah B. // Int. J. Hydrogen Energy. 2019. V. 44. № 37. P. 20889.
  16. Reshetenko T.V., Avdeeva L.B., Ismagilov Z.R., Chuvilin A.L., Ushakov V.A. // Appl. Catal. A: Gen. 2003. V. 247. № 1. P. 51.
  17. Чесноков В.В. // Кинетика и катализ. 2022. Т. 63. № 1. С. 77.
  18. Amrute A.P., De Bellis J., Felderhoff M., Schuth F. // Chem. Eur. J. 2021. V. 27. № 23. P. 6819.
  19. Мишаков И.В., Афонникова С.Д., Бауман Ю.И., Шубин Ю.В., Тренихин М.В., Серкова А.Н., Ведягин А.А. // Кинетика и катализ. 2022. T. 63. № 1. C. 110.
  20. Shelepova E.V., Maksimova T.A., Bauman Y.I., Ayupov A.B., Mishakov I.V., Vedyagin A.A. // Int. J. Hydrogen Energy. 2024. V. 82. P. 662.
  21. Schoemaker S.E., Welling T.A.J., Wezendonk D.F.L., Reesink B.H., van Bavel A.P., de Jongh P.E. // Catal. Today. 2023. V. 418. Art. 114110.
  22. Wang H.Y., Lua A.C. // Chem. Eng. J. 2014. V. 243. P. 79.
  23. Borghei M., Karimzadeh R., Rashidi A., Izadi N. // Int. J. Hydrogen Energy. 2010. V. 35. № 17. P. 9479.
  24. Alstrup I., Tavares M.T. // J. Catal. 1993. V. 139. № 2. P. 513.
  25. Powder Diffraction File. PDF_2/Release 2009: International Centre for Diffraction Data, USA.
  26. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. № 3. P. 301.
  27. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051.
  28. Mel’gunov M.S. // Adsorption. 2023. V. 29. № 5. P. 199.
  29. Neimark A.V., Lin Y., Ravikovitch P.I., Thommes M. // Carbon. 2009. V. 47. № 7. P. 1617.
  30. Monshi A., Foroughi M.R., Monshi M.R. // World J. Nano Sci. Eng. 2012. V. 2. № 3. P. 154.
  31. Shivtsov D.M., Veselov G.B., Afonnikova S.D., Ayupov A.B., Shubin Y.V., Bauman Y.I., Mishakov I.V., Shelepova E.V., Vedyagin A.A. // Int. J. Hydrogen Energy. 2025. V. 149. Art. 150082.
  32. Shen Y., Lua A.C. // Appl. Catal. B: Environ. 2015. V. 164. P. 61.
  33. Dipu A.L. // Int. J. Energy Res. 2021. V. 45. № 7. P. 9858.
  34. Fedorov A.V., Kukushkin R.G., Yeletsky P.M., Bulavchenko O.A., Chesаlоv Y.A., Yakovlev V.A. // J. Alloys Compd. 2020. V. 844. Art. 156135.
  35. Afonnikova S.D., Gilin D.A., Veselov G.B., Trenikhin M.V., Shubin Y.V., Ayupov A.B., Mishakov I.V., Vedyagin A.A. // Fuel. 2024. V. 375. Art. 132542.
  36. Villacampa J.I., Royo C., Romeo E., Montoya J.A., Del Angel P., Monzon A. // Appl. Catal. A: Gen. 2003. V. 252. № 2. P. 363.
  37. Li J., Xiao C., Xiong L., Chen X., Zhao L., Dong L., Du Y., Yang Y., Wang H., Peng S. // RSC Adv. 2016. V. 6. № 57. P. 52154.
  38. Shelepova E.V., Maksimova T.A., Bauman Y.I., Mishakov I.V., Vedyagin A.A. // Hydrogen. 2022. V. 3. № 4. P. 450.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).