Bimetallic (Co, Fe, Ni)Mg4Al2On layered double hydroxides based catalysts for the process of ammonia decomposition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, monometallic MMg4Al2On and bimetallic MxMyMg4Al2On (M – Co,Fe, Ni) layered double hydroxides based catalysts were synthesized by the coprecipitation method. It was found that the samples dried at 110°C are layered double hydroxides with a hydrotalcite structure. After calcination at 550°C, the samples form mixed oxides with a specific nanostructure, intermediate between the NaCl and spinel type structures. The samples are characterized by a high specific surface area (105–209 m2/g). The catalytic activity was studied in the ammonia decomposition process. Among all the catalysts, the Co0.5Ni0.5Mg4Al2On catalyst has the highest activity: at 550°C and GHSV 72000 mL h−1 gcat −1 ammonia conversion was 32%, which corresponds to H2 productivity of 25.7 mmol gcat −1 min−1. According to the TEM, it was found that the average size of metal particles in the Co0.5Ni0.5Mg4Al2On catalyst is 10–14 nm. The Co0.5Ni0.5Mg4Al2On catalyst showed stable activity during the all testing period in the ammonia decomposition process (~40 h).

About the authors

Z. A Fedorova

Boreskov Institute of Catalysis SB RAS; Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: sabirova@catalysis.ru
Novosibirsk, Russia; Novosibirsk, Russia

V. A Borisov

New Chemical Technologies Center, Boreskov Institute of Catalysis SB RAS

Omsk, Russia

B. Abbas

Novosibirsk State University

Novosibirsk, Russia

V. P Pakharukova

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

E. Yu Gerasimov

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

A. Yu Gladkiy

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

D. A Shlyapin

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

P. V Snytnikov

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

References

  1. Mukherjee S., Devaguptapu S.V., Sviripa A., Lund C.R.F., Wu G. // Appl. Catal. B: Environ. 2018. V. 226. P. 162. https://doi.org/10.1016/j.apcatb.2017.12.039
  2. Autrey T., Chen P. // J. Energy Chem. 2023. V. 77. P. 119. https://doi.org/10.1016/j.jechem.2022.10.039
  3. Naseem K., Qin F., Khalid F., Suo G., Zahra T., Chen Z., Javed Z. // Renew. Sustain. Energy Rev. 2025. V. 210. Art. 115196. https://doi.org/10.1016/j.rser.2024.115196
  4. Chirosca A.-M., Rusu E., Minzu V. // Energies. 2024. V. 17. P. 5820. https://doi.org/10.3390/en17235820
  5. Aziz M., Wijayanta A.T., Nandiyanto A.B.D. // Energies. 2020. V. 13. P. 3062. https://doi.org/10.3390/en13123062
  6. Bartels J.R., Pate M.B. // Final report. Grant number: 07S-01, 2008.
  7. Andersson J., Gronkvist S. // Int. J. Hydrogen Energy. 2019. V. 44. P. 11901. https://doi.org/10.1016/j.ijhydene.2019.03.063
  8. Ma N., Zhao W., Wang W., Li X., Zhou H. // Int. J. Hydrogen Energy. 2024. V. 50. P. 379. https://doi.org/10.1016/j.ijhydene.2023.09.021
  9. Demirci U.B. // Energy Technol. 2018. V. 6. P. 470. https://doi.org/10.1002/ente.201700486
  10. Jepsen L.H., Ley M.B., Lee Y.-S., Cho Y.W., Dornheim M., Jensen J.O., Filinchuk Y., Jorgensen J.E., Besenbacher F., Jensen T.R. // Mater. Today. 2014. V. 17. P. 129. https://doi.org/10.1016/j.mattod.2014.02.015
  11. Klopčič N., Grimmer I., Winkler F., Sartory M., Trattner A. // J. Energy Storage. 2023. V. 72. Art. 108456. https://doi.org/10.1016/j.est.2023.108456
  12. Bourane A., Elanany M., Pham T.V., Katikaneni S.P. // Int. J. Hydrogen Energy. 2016. V. 41. P. 23075. https://doi.org/10.1016/j.ijhydene.2016.07.167
  13. MacFarlane D.R., Cherepanov P.V., Choi J., Suryanto B.H.R., Hodgetts R.Y., Bakker J.M., Ferrero Vallana F.M., Simonov A.N. // Joule. 2020. V. 4. P. 1186. https://doi.org/10.1016/j.joule.2020.04.004
  14. Sayas S., Morlanes N., Katikaneni S.P., Harale A., Solami B., Gascon J. // Catal. Sci. Technol. 2020. V. 10. P. 5027. https://doi.org/10.1039/D0CY00686F
  15. Klerke A., Christensen C.H., Norskov J.K., Vegge T. // J. Mater. Chem. 2008. V. 18. P. 2304. https://doi.org/10.1039/b720020j
  16. Valera-Medina A., Xiao H., Owen-Jones M., David W.I.F., Bowen P.J. // Prog. Energy Combust. Sci. 2018. V. 69. P. 63. https://doi.org/10.1016/j.pecs.2018.07.001
  17. Schuth F., Palkovits R., Schlogl R., Su D.S. // Energy Environ. Sci. 2012. V. 5. P. 6278. https://doi.org/10.1039/C2EE02865D
  18. Guler M., Dogu T., Varisli D. // Appl. Catal. B: Environ. 2017. V. 219. P. 173. https://doi.org/10.1016/j.apcatb.2017.07.043
  19. Le T.A., Kim Y., Kim H.W., Lee S.-U., Kim J.-R., Kim T.-W., Lee Y.-J. // Appl. Catal. B: Environ. 2021. V. 285. Art. 119831. https://doi.org/10.1016/j.apcatb.2020.119831
  20. Chen C., Wu K., Ren H., Zhou C., Luo Y., Lin L., Au C., Jiang L. // Energy & Fuels. 2021. V. 35. P. 11693. https://doi.org/10.1021/acs.energyfuels.1c01261
  21. Le T.A., Do Q.C., Kim Y., Kim T.-W., Chae H.-J. // Korean J. Chem. Eng. 2021. V. 38. P. 1087. https://doi.org/10.1007/s11814-021-0767-7
  22. Pinzon M., Sanchez-Sanchez A., Romero A., de la Osa A.R., Sanchez P. // Fuel. 2022. V. 323. Art. 124384. https://doi.org/10.1016/j.fuel.2022.124384
  23. Li H., Guo L., Qu J., Fang X., Fu Y., Duan J., Wang W., Li C. // Int. J. Hydrogen Energy. 2023. V. 48. P. 8985. https://doi.org/10.1016/j.ijhydene.2022.11.338
  24. Gong X., Li N., Li Y., Hu R. // Mol. Catal. 2022. V. 531. Art. 112651. https://doi.org/10.1016/j.mcat.2022.112651
  25. Yi Y., Wang L., Guo Y., Sun S., Guo H. // AIChE J. 2019. V. 65. P. 691. https://doi.org/10.1002/aic.16479
  26. Shimoda N., Yoshimura R., Nukui T., Satokawa S. // J. Chem. Eng. Jpn. 2019. V. 52. P. 413. https://doi.org/10.1252/jcej.18we226
  27. Wu Z.-W., Li X., Qin Y.-H., Deng L., Wang C.-W., Jiang X. // Int. J. Hydrogen Energy. 2020. V. 45. P. 15263. https://doi.org/10.1016/j.ijhydene.2020.04.007
  28. Huang C., Li H., Yang J., Wang C., Hu F., Wang X., Lu Z.-H., Feng G., Zhang R. // Appl. Surf. Sci. 2019. V. 478. P. 708. https://doi.org/10.1016/j.apsusc.2019.01.269
  29. Ganley J.C., Thomas F.S., Seebauer E.G., Masel R.I. // Catal. Lett. 2004. V. 96. P. 117.
  30. Guo W., Vlachos D.G. // Nat. Commun. 2015. V. 6. P. 8619. https://doi.org/10.1038/ncomms9619
  31. Lucentini I., Casanovas A., Llorca J. // Int. J. Hydrogen Energy. 2019. V. 44. P. 12693. https://doi.org/10.1016/j.ijhydene.2019.01.154
  32. Hill A.K., Torrente-Murciano L. // Appl. Catal. B: Environ. 2015. V. 172–173. P. 129. https://doi.org/10.1016/j.apcatb.2015.02.011
  33. He H., Jiang H., Yang F., Liu J., Zhang W., Jin M., Li Z. // Int. J. Hydrogen Energy. 2023. V. 48. P. 5030. https://doi.org/10.1016/j.ijhydene.2022.10.255
  34. Duan X., Ji J., Qian G., Fan C., Zhu Y., Zhou X., Chen D., Yuan W. // J. Mol. Catal. A. Chem. 2012. V. 357. P. 81. https://doi.org/10.1016/j.molcata.2012.01.023
  35. Fu E., Qiu Y., Lu H., Wang S., Liu L., Feng H., Yang Y., Wu Z., Xie Y., Gong F., Xiao R. // Fuel Process. Technol. 2021. V. 221. Art. 106945. https://doi.org/10.1016/j.fuproc.2021.106945
  36. Hu X.-C., Wang W.-W., Jin Z., Wang X., Si R., Jia C.J. // J. Energy Chem. 2019. V. 38. P. 41. https://doi.org/10.1016/j.jechem.2018.12.024
  37. Akca M., Varisli D. // Mol. Catal. 2020. V. 485. Art. 110823. https://doi.org/10.1016/j.mcat.2020.110823
  38. Chen W., Shi Y., Liu C., Ren Z., Huang Z., Chen Z., Zhang X., Liang S., Xie L., Lian C., Qian G., Zhang J., Liu X., Chen D., Zhou X., Yuan W., Duan X. // Nat. Commun. 2024. V. 15. P. 8995. https://doi.org/10.1038/s41467-024-53474-0
  39. Simonsen S.B., Chakraborty D., Chorkendorff I., Dahl S. // Appl. Catal. A: Gen. 2012. V. 447–448. P. 22. https://doi.org/10.1016/j.apcata.2012.08.045
  40. Muroyama H., Saburi C., Matsui T., Eguchi K. // Appl. Catal. A: Gen. 2012. V. 443–444. P. 119. https://doi.org/10.1016/j.apcata.2012.07.031
  41. Podila S., Driss H., Zaman S.F., Alhamed Y.A., AlZahrani A.A., Daous M.A., Petrov L.A. // J. Mol. Catal. A. Chem. 2016. V. 414. P. 130. https://doi.org/10.1016/j.molcata.2016.01.012
  42. Podila S., Alhamed Y.A., AlZahrani A.A, Petrov L.A. // Int. J. Hydrogen Energy. 2015. V. 40. P. 1541. https://doi.org/10.1016/j.ijhydene.2015.09.057
  43. Karolewska M., Truszkiewicz E., Mierzwa B., Kępiński L., Rarog-Pilecka W. // Appl. Catal. A. Gen. 2012. V. 445–446. P. 280. https://doi.org/10.1016/j.apcata.2012.08.028
  44. Huang C., Li H., Yang J., Wang C., Hu F., Wang X., Lu Z.-H., Feng G., Zhang R. // Appl. Surf. Sci. 2019. V. 478. P. 708. https://doi.org/10.1016/j.apsusc.2019.01.269
  45. Sima D., Wu H., Tian K., Xie S., Foo J.J., Li S., Wang D., Ye Y., Zheng Z., Liu Y.-Q. // Int. J. Hydrogen Energy. 2020. V. 45. P. 9342. https://doi.org/10.1016/j.ijhydene.2020.01.209
  46. Zhang L.-F., Li M., Ren T.-Z., Liu X., Yuan Z.-Y. // Int. J. Hydrogen Energy. 2015. V. 40. P. 2648. https://doi.org/10.1016/j.ijhydene.2014.12.079
  47. Varisli D., Kaykac N.G. // Int. J. Hydrogen Energy. 2016. V. 41. P. 5955. https://doi.org/10.1016/j.ijhydene.2016.02.097
  48. Zhang H., Alhamed Y.A., Chu W., Ye Z., AlZahrani A., Petrov L. // Appl. Catal. A: Gen. 2013. V. 464–465. P. 156. https://doi.org/10.1016/j.apcata.2013.05.046
  49. Zhang H., Alhamed Y.A., Al-Zahrani A., Daous M., Inokawa H., Kojima Y., Petrov L.A. // Int. J. Hydrogen Energy. 2014. V. 39. P. 17573. https://doi.org/10.1016/j.ijhydene.2014.07.183
  50. Takehira K. // Appl. Clay Sci. 2017. V. 136. P. 112. https://doi.org/10.1016/j.clay.2016.11.012
  51. Chen S., Perathoner S., Ampelli C., Mebrahtu C., Su D., Centi G. // Angew. Chem. Int. Ed. 2017. V. 56. P. 2699. https://doi.org/10.1002/anie.201609533
  52. Lin X., Li R., Lu M., Chen C., Li D., Zhan Y., Jiang L. // Fuel. 2015. V. 162. P. 271. https://doi.org/10.1016/j.fuel.2015.09.021
  53. Balsamo N., Mendieta S., Oliva M., Eimer G., Crivello M. // Mater. Sci. 2012. V. 1. P. 506. https://doi.org/10.1016/j.mspro.2012.06.068
  54. Fan G., Li F., Evans D.G., Duan X. // Chem. Soc. Rev. 2014. V. 43. P. 7040. https://doi.org/10.1039/C4CS00160E
  55. Zou J., Xie D., Xu J., Song X., Zeng X., Wang H., Zhao F. // Appl. Surf. Sci. 2022. V. 571. Art. 151322. https://doi.org/10.1016/j.apsusc.2021.151322
  56. Wang Q., O’Hare D. // Chem. Rev. 2012. V. 112. P. 4124. https://doi.org/10.1021/cr200434v
  57. Wiyantoko B., Kurniawati P., Purbaningtias T.E., Fatimah I. // Procedia Chem. 2015. V. 17. P. 21. https://doi.org/10.1016/j.proche.2015.12.115
  58. Su Q., Wang H., Gu L., Ji W., Au C.-T. // Int. J. Hydrogen Energy. 2021. V. 46. P. 31122. https://doi.org/10.1016/j.ijhydene.2021.07.020
  59. Podila S., Driss H., Zaman S.F., Ali A.M., Al-Zahrani A.A., Daous M.A., Petrov L.A. // Int. J. Hydrogen Energy. 2020. V. 45. P. 873. https://doi.org/10.1016/j.ijhydene.2019.10.107
  60. Sikander U., Samsudin M.F., Sufian S., KuShaari K., Kait C.F., Naqvi S.R., Chen W.-H. // Int. J. Hydrogen Energy. 2019. V. 44. P. 14424. https://doi.org/10.1016/j.ijhydene.2018.10.224
  61. Sato K., Abe N., Kawagoe T., Miyahara S., Honda K., Nagaoka K. // Int. J. Hydrogen Energy. 2017. V. 42. P. 6610. https://doi.org/10.1016/j.ijhydene.2016.11.150
  62. Fedorova Z.A., Borisov V.A., Pakharukova V.P., Gerasimov E.Y., Belyaev V.D., Gulyaeva T.I., Shlyapin D.A., Snytnikov P.V. // Catalysts. 2023. V. 13. P. 678. https://doi.org/10.3390/catal13040678
  63. Rodrigues A.C.C., Henriques C.A., Monteiro J.L.F. // Mater. Res. 2003. V. 6. P. 563. https://doi.org/10.1590/S1516-14392003000400024
  64. Cherepanova S.V., Leont’eva N.N., Arbuzov A.B., Drozdov V.A., Belskaya O.B., Antonicheva N.V. // J. Solid State Chem. 2015. V. 225. P. 417. https://doi.org/10.1016/j.jssc.2015.01.022
  65. Li Q., Meng M., Tsubaki N., Li X., Li Z., Xie Y., Hu T., Zhang J. // Appl. Catal. B: Environ. 2009. V. 91. P. 406. https://doi.org/10.1016/j.apcatb.2009.06.007
  66. Gallego G.S., Batiot-Dupeyrat C., Barrault J., Florez E., Mondragon F. // Appl. Catal. A: Gen. 2008. V. 334. P. 251. https://doi.org/10.1016/j.apcata.2007.10.010
  67. Xu J., Zhou W., Li Z., Wang J., Ma J. // Int. J. Hydrogen Energy. 2009. V. 34. P. 6646. https://doi.org/10.1016/j.ijhydene.2009.06.038
  68. Horlyck J., Lawrey C., Lovell E.C., Amal R., Scott J. // Chem. Eng. J. 2018. V. 352. P. 572. https://doi.org/10.1016/j.cej.2018.07.009
  69. Abd Ghani N.A., Azapour A., Syed Muhammad A.F., Abdullah B. // Int. J. Hydrogen Energy. 2019. V. 44. P. 20881. https://doi.org/10.1016/j.ijhydene.2018.05.153
  70. Huangluo E., Wei H., Wang Y., Zhou L. // Surf. Sci. 2024. V. 745. Art. 122483. https://doi.org/10.1016/j.susc.2024.122483
  71. Lendzion-Bielun Z., Narkiewicz U., Arabczyk W. // Materials (Basel). 2013. V. 6. P. 2400. https://doi.org/10.3390/ma6062400
  72. Li X., Ji W., Zhao J., Wang S., Au C. // J. Catal. 2005. V. 236. P. 181. https://doi.org/10.1016/j.jcat.2005.09.030
  73. Sun Y., Zeng W., Yang Y., Wu Q., Zou C. // Chem. Eng. J. 2024. V. 502. Art. 158043. https://doi.org/10.1016/j.cej.2024.158043
  74. Wang Y., Mao X., Yang J., Wang J., Guan W., Chen J., Han B., Tian Z. // Int. J. Hydrogen Energy. 2022. V. 47. P. 2608. https://doi.org/10.1016/j.ijhydene.2021.10.187
  75. Su Q., Gu L., Yao Y., Zhao J., Ji W., Ding W., Au C.-T. // Appl. Catal. B: Environ. 2017. V. 201. P. 451. https://doi.org/10.1016/j.apcatb.2016.08.05

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).