Active and stable Ni/Al2O3–(Zr + Ce)O2 catalyst for syngas production via glycerol dry reforming
- 作者: Fionov Y.A.1, Semenova S.M.1, Khaibullin S.V.1, Fionova E.A.2, Bratchikova I.G.1, Kharlanov A.N.3, Zhukova A.I.1
-
隶属关系:
- Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
- Department of Digital and Additive Technologies, MIREA – Russian Technological University
- Faculty of Chemistry, Lomonosov Moscow State University
- 期: 卷 66, 编号 2 (2025)
- 页面: 126-135
- 栏目: VIII МЕЖДУНАРОДНАЯ НАУЧНАЯ ШКОЛА-КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ “КАТАЛИЗ: ОТ НАУКИ К ПРОМЫШЛЕННОСТИ” (30 СЕНТЯБРЯ ‒ 3 ОКТЯБРЯ 2024 г., ТОМСК)
- URL: https://ogarev-online.ru/0453-8811/article/view/307654
- DOI: https://doi.org/10.31857/S0453881125020068
- EDN: https://elibrary.ru/skrqta
- ID: 307654
如何引用文章
详细
A nickel-based catalyst supported on alumina-zirconia-ceria oxides was investigated to evaluate its performance in the dry reforming of glycerol with CO₂. The reaction was carried out at 700°C, atmospheric pressure and a glycerol/CO₂ molar ratio of 1. The catalyst showed stable operation for 7 h and achieved glycerol and CO₂ conversions of 60 and 47%, respectively, with H₂ and CO yields of 48 and 58%. Thermogravimetric analysis revealed the presence of carbon deposits, which, however, did not result in a significant loss of activity. These results highlight the potential of the synthesized catalyst for glycerol conversion for the production of syngas and hydrogen from renewable feedstock.
作者简介
Yu. Fionov
Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: fionovyuri@gmail.com
Miklukho-Maklaya St., 6, Moscow, 117198 Russia
S. Semenova
Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: fionovyuri@gmail.com
Miklukho-Maklaya St., 6, Moscow, 117198 Russia
S. Khaibullin
Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: fionovyuri@gmail.com
Miklukho-Maklaya St., 6, Moscow, 117198 Russia
E. Fionova
Department of Digital and Additive Technologies, MIREA – Russian Technological University
Email: fionovyuri@gmail.com
prosp. Vernadskogo, 78, bldg. 4, Moscow, 119454 Russia
I. Bratchikova
Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
Email: fionovyuri@gmail.com
Miklukho-Maklaya St., 6, Moscow, 117198 Russia
A. Kharlanov
Faculty of Chemistry, Lomonosov Moscow State University
Email: fionovyuri@gmail.com
GSP-1, Leninskiye Gory, 1, bldg. 3, Moscow, 119991 Russia
A. Zhukova
Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)
编辑信件的主要联系方式.
Email: pylinina@list.ru
Miklukho-Maklaya St., 6, Moscow, 117198 Russia
参考
- Kolesárová N., Hutňan M., Bodík I., Špalková V. // BioMed Res. Int. 2011. V. 2011. 126798. https://doi.org/10.1155/2011/126798
- Cheng C.K., Lim R.H., Ubil A., Chin S.Y., Gimbun J. // Adv. Mater. Phys. Chem. 2012. V. 2. 24B043. https://doi.org/10.4236/ampc.2012.24B043
- Schwengber C.A., Alves H.J., Schaffner R.A., Alves da Silva F., Sequinel R., Rossato Bach V., Ferracin R.J. // Renew. Sustain. Energy Rev. 2016. V. 58. P. 259. https://doi.org/10.1016/j.rser.2015.12.279
- Sadykov V.A., Simonov M.N., Belpalko Y.N., Bobrova L.N., Eremeev N.F., Arapova M.V., Smal’ E.A., Mezentseva N.V., Pavlova S.N. // Kinet. Catal. 2019. Vol. 60. № 5. Р. 582. https://doi.org/10.1134/S0023158419050082
- Sabri F., Idem R., Ibrahim H. // Ind. Eng. Chem. Res. 2018. V. 57. P. 2486. https://doi.org/10.1021/acs.iecr.7b04582
- Pairojpiriyakul T., Kiatkittipong W., Assabumrungrat S., Croiset E. // Int. J. Hydrogen Energy. 2014. V. 39. P. 159. https://doi.org/10.1016/j.ijhydene.2013.09.148
- Mohd Arif N.N., Zainal Abidin S., Osazuwa O.U., Vo D.-V.N., Azizan M.T. // Int. J. Hydrogen Energy. 2019. V. 44. P. 20857. https://doi.org/10.1016/j.ijhydene.2018.06.084
- Kamonsuangkasem K., Therdthianwong S., Therdthianwong A. // Fuel Process. Technol. 2013. V. 106. P. 695. https://doi.org/10.1016/j.fuproc.2012.10.003
- Iriondo A., Cambra J.F., Barrio V.L., Guemez M.B., Arias P.L., Sanchez-Sanchez M.C., Navarro R.M., Fierro J.L.G. // Appl. Catal. B: Environ. 2011. V. 106. P. 83. https://doi.org/10.1016/j.apcatb.2011.05.009
- Tamošiūnas A., Gimžauskaitė D., Aikas M., Uscila R., Zakarauskas K. // Int. J. Hydrogen Energy. 2022. V. 47. P. 12219. https://doi.org/10.1016/j.ijhydene.2021.06.203
- Sahraei O.A.Z., Larachi F., Abatzoglou N., Iliuta M.C. // Appl. Catal. B: Environ. 2017. V. 219. P. 183. https://doi.org/10.1016/j.apcatb.2017.07.039
- Lee H.C., Siew K.W., Khan M.R., Chin S.Y., Cheng C.K. // J. Energy Chem. 2014. V. 23. P. 645. https://doi.org/10.1016/S2095-4956(14)60196-0
- Siew K.W., Lee H.C., Gimbun J., Cheng C.K. // J. Energy Chem. 2014. V. 23. P. 15. https://doi.org/10.1016/S2095-4956(14)60112-1
- Siew K.W., Lee H.C., Gimbun J., Chin S.Y., Khan M.R., Taufiq-Yap Y.H., Cheng C.K. // Renew. Energy. 2015. V. 74. P. 441. https://doi.org/10.1016/j.renene.2014.08.048
- Wang X., Li M., Wang M., Wang H., Li S., Wang S., Ma X. // Fuel. 2009. V. 88. P. 2148. https://doi.org/10.1016/j.fuel.2009.01.015
- Yu J., Odriozola J.A., Reina T.R. // Catalysts. 2019. V. 9. P. 1015. https://doi.org/10.3390/catal9121015
- Bychkov V.Y., Tulenin Y.P., Gorensberg A.Y., Korchak V.N. // Kinet. Catal. 2021. V. 62. № 1. P. 181. https://doi.org/10.1134/S0023158421010018
- Bychkov V.Y., Tyulenin Y.P., Korchak V.N. // Kinet. Catal. 2003. V. 44. P. 353. https://doi.org/10.1023/A:1024494918755
- Roslan N.A., Zainal Abidin S., Osazuwa O.U., Chin S.Y., Taufiq-Yap Y.H. // Int. J. Hydrogen Energy. 2021. V. 46. P. 30959. https://doi.org/10.1016/j.ijhydene.2021.03.162
- Tavanarad M., Meshkani F., Rezaei M. // J. CO Util. 2018. V. 24. P. 298. https://doi.org/10.1016/j.jcou.2018.01.009
- Fionov Y., Khlusova K., Chuklina S., Mushtakov A., Fionov A., Zhukov D., Averin A., Zhukova A. // Fuel. 2024. V. 376. 132685. https://doi.org/10.1016/j.fuel.2024.132685
- Golestani Kashani M., Ramezani Y., Meshkani F. // Mater. Today Commun. 2024. V. 40. 109999. https://doi.org/10.1016/j.mtcomm.2024.109999
- Memarian Z., Meshkani F. // Fuel. 2025. In press. https://doi.org/10.1016/j.fuel.2025.134902
- Huang L., Li D., Tian D., Jiang L., Li Z., Wang H., Li K. // Energy Fuel. 2022. V. 36. № 10. P. 5102. https://doi.org/10.1021/acs.energyfuels.2c00523
- Zhukova A.I., Chuklina S.G., Maslenkova S.A. // Catal. Today. 2021. V. 379. P. 159. https://doi.org/10.1016/j.cattod.2021.02.015
- Zhukova A., Fionov Y., Semenova S., Khaibullin S., Chuklina S., Maslakov K., Zhukov D., Isaikina O., Mushtakov A., Fionov A. // J. Phys. Chem. C. 2024. V. 128. № 47. P. 20177. https://doi.org/10.1021/acs.jpcc.4c07213
- Salehi S., Alavi S.M., Rezaei M., Akbari E., Varbar M. // J. CO Util. 2024. V. 81. 102737. https://doi.org/10.1016/j.jcou.2024.102737
- Harun N., Gimbun J., Azizan M.T., Zainal Abidin S. // Bull. Chem. React. Eng. Catal. 2016. V. 11. № 2. P. 220. https://doi.org/10.9767/bcrec.11.2.553.220-229
- Golestani Kashani M., Ramezani Y., Meshkani F. // Mater. Res. Bull. 2025. V. 182. 113135. https://doi.org/10.1016/j.materresbull.2024.113135
- Roslan N.A., Zainal Abidin S., Osazuwa O.U., Chin S.Y., Taufiq-Yap Y.H. // Fuel. 2022. V. 314. 123050. https://doi.org/10.1016/j.fuel.2021.123050
- Lyu Y., Jocz J., Xu R., Stavitski E., Sievers C. // ACS Catal. 2020. V. 10. № 19. P. 11235. https://doi.org/10.1021/acscatal.0c02426
- Huang Y., Li X., Zhang Q., Vinokurov V.A., Huang W. // Fuel. 2022. V. 310. 122449. https://doi.org/10.1016/j.fuel.2021.122449
- Wang Z., Cao X.-M., Zhu J., Hu P. // J. Catal. 2014. V. 311. P. 469. https://doi.org/10.1016/j.jcat.2013.12.015
- Harun N., Gimbun J., Azizan M.T., Zainal Abidin S. // Bull. Chem. React. Eng. Catal. 2016. V. 11. P. 220. https://doi.org/10.9767/bcrec.11.2.553.220-229
- Donphai W., Faungnawakij K., Chareonpanich M., Limtrakul J. // Appl. Catal. A: Gen. 2014. V. 475. P. 16. https://doi.org/10.1016/j.apcata.2014.01.014
- Zhukova A., Fionov Y., Chuklina S., Mikhalenko I., Fionov A.V., Isaikina O., Zhukov D.Y., de Lima A.M. // Energy Fuel. 2024. V. 38. P. 482. https://doi.org/10.1021/acs.energyfuels.3c03421
- Zhang G., Wang Y., Li X., Bai Y., Zheng L., Wu L., Han X. // Ind. Eng. Chem. Res. 2018. V. 57. № 50. P. 17076. https://doi.org/10.1021/acs.iecr.8b03612
- Weiss B.P., Kim S.S., Kirschvink J.L., Kopp R.E., Sankaran M., Kobayashi A., Komeili A. // Earth Planet. Sci. Lett. 2004. V. 224. P. 73. https://doi.org/10.1016/j.epsl.2004.04.024
- Manukyan A.S., Mirzakhanyan A.A., Badalyan G.R., Shirinyan G.H., Fedorenko A.G., Lianguzov N.V., Yuzyuk Y.I., Bugaev L.A., Sharoyan E.G. // J. Nanopart. Res. 2012. V. 14. P. 982. https://doi.org/10.1007/s11051-012-0982-6
- Zhou L., Li L., Wei N., Li J., Basset J.-M. // ChemCatChem. 2015. V. 7. № 16. P. 2508. https://doi.org/10.1002/cctc.201500379
- Pegios N., Bliznuk V., Theofanidis S.A., Galvita V.V., Marin G.B., Palkovits R., Simeonov K. // Appl. Surf. Sci. 2018. V. 452. P. 239. https://doi.org/10.1016/j.apsusc.2018.04.229
- Bannov A.G., Popov M.V., Kurmashov P.B. // J. Therm. Anal. Calorim. 2020. V. 142. P. 349. https://doi.org/10.1007/s10973-020-09647-2
补充文件
